论文标题

多实体时间序列预测中的动态关系发现和利用

Dynamic Relation Discovery and Utilization in Multi-Entity Time Series Forecasting

论文作者

Huang, Lin, Wu, Lijun, Zhang, Jia, Bian, Jiang, Liu, Tie-Yan

论文摘要

时间序列预测在各种领域都起着关键作用。在许多实际情况下,存在多个预测实体(例如,太阳系中的电站,交通系统中的电台)。一个直接的预测解决方案是通过1D-CNN,RNN,变压器等来挖掘每个实体的时间依赖。这种方法忽略了这些实体之间的关系,因此,使用空间 - 周期性关系失去了提高性能的机会。但是,在许多现实世界中,除了明确的关系外,实体之间可能存在至关重要但隐含的关系。如何在各种情况下发现实体之间有用的隐性关系并有效利用每个实体的关系。为了尽可能地挖掘实体之间的隐式关系,并动态利用该关系来改善预测性能,我们在这项工作中提出了具有自动图学习(A2GNN)的注意力多刻板神经网络。特别是,基于Gumbel-Softmax的自动图学习器旨在自动捕获预测实体之间的隐式关系。我们进一步提出了一个注意力关系学习者,使每个实体能够动态关注其首选关系。大量实验是在来自三个不同域的五个现实世界数据集上进行的。结果证明了A2GNN超出了几种最新方法的有效性。

Time series forecasting plays a key role in a variety of domains. In a lot of real-world scenarios, there exist multiple forecasting entities (e.g. power station in the solar system, stations in the traffic system). A straightforward forecasting solution is to mine the temporal dependency for each individual entity through 1d-CNN, RNN, transformer, etc. This approach overlooks the relations between these entities and, in consequence, loses the opportunity to improve performance using spatial-temporal relation. However, in many real-world scenarios, beside explicit relation, there could exist crucial yet implicit relation between entities. How to discover the useful implicit relation between entities and effectively utilize the relations for each entity under various circumstances is crucial. In order to mine the implicit relation between entities as much as possible and dynamically utilize the relation to improve the forecasting performance, we propose an attentional multi-graph neural network with automatic graph learning (A2GNN) in this work. Particularly, a Gumbel-softmax based auto graph learner is designed to automatically capture the implicit relation among forecasting entities. We further propose an attentional relation learner that enables every entity to dynamically pay attention to its preferred relations. Extensive experiments are conducted on five real-world datasets from three different domains. The results demonstrate the effectiveness of A2GNN beyond several state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源