论文标题
早产新生婴儿的节能呼吸异常检测
Energy-Efficient Respiratory Anomaly Detection in Premature Newborn Infants
论文作者
论文摘要
早产婴儿中呼吸率的精确监测对于根据需要开始医疗干预至关重要。有线技术对于患者来说可能是侵入性的和令人震惊的。我们提出了一个为早产婴儿提供深度学习的可穿戴监测系统,该系统使用信号预测呼吸道戒烟,这些信号是通过无线可穿戴肚皮无线收集的信号。我们提出了一个五阶段的设计管道,涉及数据收集和标签,功能缩放,使用超参数调整的模型选择,模型培训和验证,模型测试和部署。使用的模型是一个1D卷积神经网络(1DCNN)结构,具有1个卷积层,1个合并层和3个完全连接的层,可实现97.15%的精度。为了解决可穿戴处理的能源限制,探索了几种量化技术,并分析了它们的性能和能耗。我们提出了一种新型的基于峰值的神经网络(SNN)呼吸道分类解决方案,该解决方案可以在事件驱动的神经形态硬件上实现。我们提出了一种将基线1DCNN的模拟操作转换为相当于其尖峰的方法。我们使用转换后的SNN的参数进行设计空间探索,以生成具有不同精度和能量足迹的推理解决方案。我们选择一种解决方案,与基线1DCNN模型相比,能量低18倍,该解决方案的精度达到93.33%。另外,所提出的SNN溶液达到了相似的精度,但能量少4倍。
Precise monitoring of respiratory rate in premature infants is essential to initiate medical interventions as required. Wired technologies can be invasive and obtrusive to the patients. We propose a Deep Learning enabled wearable monitoring system for premature newborn infants, where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive wearable Bellypatch put on infant's body. We propose a five-stage design pipeline involving data collection and labeling, feature scaling, model selection with hyperparameter tuning, model training and validation, model testing and deployment. The model used is a 1-D Convolutional Neural Network (1DCNN) architecture with 1 convolutional layer, 1 pooling layer and 3 fully-connected layers, achieving 97.15% accuracy. To address energy limitations of wearable processing, several quantization techniques are explored and their performance and energy consumption are analyzed. We propose a novel Spiking-Neural-Network(SNN) based respiratory classification solution, which can be implemented on event-driven neuromorphic hardware. We propose an approach to convert the analog operations of our baseline 1DCNN to their spiking equivalent. We perform a design-space exploration using the parameters of the converted SNN to generate inference solutions having different accuracy and energy footprints. We select a solution that achieves 93.33% accuracy with 18 times lower energy compared with baseline 1DCNN model. Additionally the proposed SNN solution achieves similar accuracy but with 4 times less energy.