论文标题

T-Metaset:通过积极学习的大规模超材料数据集的裁缝属性偏差

t-METASET: Tailoring Property Bias of Large-Scale Metamaterial Datasets through Active Learning

论文作者

Lee, Doksoo, Chan, Yu-Chin, Chen, Wei Wayne, Wang, Liwei, van Beek, Anton, Chen, Wei

论文摘要

受数据驱动的超材料设计的启发,该设计范围已成为一种引人注目的范式,可以释放多尺度体系结构的潜力。然而,以模型为中心的研究趋势缺乏专门用于数据获取的原则性框架,其质量传播到下游任务。通常是由幼稚的空间填充设计在形状描述符空间中建造的,具有高度不平衡或与感兴趣的设计任务相矛盾的属性分布。为此,我们提出了T-Metaset:一个基于积极学习的数据采集框架,旨在指导多样化和任务感知的数据生成。显然,我们在数据驱动的超材料设计的早期阶段寻求解决方案,但经常被忽视的方案:当已经准备了一个纯种(〜O(10^4))纯形状的库时,没有评估属性。关键的想法是利用从生成模型中学到的数据驱动的形状描述符,适合作为启动代理的稀疏回归器,并利用与多样性相关的指标,以将数据获取推向帮助设计师实现设计目标的领域。我们在三种部署案例中验证了所提出的框架,其中涵盖了一般使用,特定于任务的使用和可调整的用途。两个大规模的机械超材料数据集用于证明功效。 T-Metaset适用于基于图像的一般设计表示,可以提高数据驱动设计的未来进步。

Inspired by the recent achievements of machine learning in diverse domains, data-driven metamaterials design has emerged as a compelling paradigm that can unlock the potential of multiscale architectures. The model-centric research trend, however, lacks principled frameworks dedicated to data acquisition, whose quality propagates into the downstream tasks. Often built by naive space-filling design in shape descriptor space, metamaterial datasets suffer from property distributions that are either highly imbalanced or at odds with design tasks of interest. To this end, we present t-METASET: an active-learning-based data acquisition framework aiming to guide both diverse and task-aware data generation. Distinctly, we seek a solution to a commonplace yet frequently overlooked scenario at early stages of data-driven design of metamaterials: when a massive (~O(10^4 )) shape-only library has been prepared with no properties evaluated. The key idea is to harness a data-driven shape descriptor learned from generative models, fit a sparse regressor as a start-up agent, and leverage metrics related to diversity to drive data acquisition to areas that help designers fulfill design goals. We validate the proposed framework in three deployment cases, which encompass general use, task-specific use, and tailorable use. Two large-scale mechanical metamaterial datasets are used to demonstrate the efficacy. Applicable to general image-based design representations, t-METASET could boost future advancements in data-driven design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源