论文标题
本地化非线性$ {\ cal n} =(2,2)$ sigma型号$ s^2 $
Localizing non-linear ${\cal N}=(2,2)$ sigma model on $S^2$
论文作者
论文摘要
我们提出了$ {\ cal n} =(2,2)$ supersymmetricry非线性Sigma模型的系统研究,目标是Kähler歧管。我们从同一个学领域理论方面讨论了他们的重新制定。在共同体学配方中,我们使用了2D自伴的新颖版本,该版本涉及$ u(1)$ s^2 $的动作。除了通用模型之外,我们还将与目标空间肩相吻合的靶标性模型讨论,该理论对应于与非动力学超对称背景量规多数相结合的超对称Sigma模型。我们讨论定位基因座,并在恒定图周围进行一环计算。我们认为,该理论可以将其简化为全体形态磁盘模量空间上的一些异国模型。
We present a systematic study of ${\cal N}=(2,2)$ supersymmetric non-linear sigma models on $S^2$ with the target being a Kähler manifold. We discuss their reformulation in terms of cohomological field theory. In the cohomological formulation we use a novel version of 2D self-duality which involves a $U(1)$ action on $S^2$. In addition to the generic model we discuss the theory with target space equivariance corresponding to a supersymmetric sigma model coupled to a non-dynamical supersymmetric background gauge multiplet. We discuss the localization locus and perform a one-loop calculation around the constant maps. We argue that the theory can be reduced to some exotic model over the moduli space of holomorphic disks.