论文标题
在CWB管道中实施RROF DeNoising方法进行重力波数据分析
Implementation of the rROF denoising method in the cWB pipeline for gravitational-wave data analysis
论文作者
论文摘要
当前重力波检测器网络收集的数据在很大程度上由仪器噪声主导。最近,已经提出了基于L1-Norm最小化的总变异方法,作为一种有力的技术,用于在重力波数据中清除噪声。特别是,正常化的rudin-hosher-fatemi(RROF)模型已证明有效地嵌入了模拟的高斯噪声或实际检测器噪声中。因此,将RROF模型导入现有搜索管道似乎值得考虑。在本文中,我们讨论了RROF算法的两个变体作为相干波爆发(CWB)管道的两个独立插件的实现,该插件旨在进行未建模的重力波爆发源的搜索。第一种方法是基于单步RROF方法,第二种方法采用了迭代RROF程序。通过使用Ligo-Virgo-Kagra合作的前三个观察跑的实际重力波事件进行校准,即GW1501914,GW151226,GW170817和GW190521,含有不同类型的compact binary Cocerscences。我们的分析表明,在CWB管道中实现的RROF DENOISING算法的迭代版本有效地消除了噪声,同时保持波形信号完整。因此,相结合的方法比CWB管道计算出的没有Rrof deoing步骤计算出的值更高。 CWB管道中的迭代RROF算法的结合可能会影响管道的可检测能力以及源特性的推断。
The data collected by the current network of gravitational-wave detectors are largely dominated by instrumental noise. Total variation methods based on L1-norm minimization have recently been proposed as a powerful technique for noise removal in gravitational-wave data. In particular, the regularized Rudin-Osher-Fatemi (rROF) model has proven effective to denoise signals embedded in either simulated Gaussian noise or actual detector noise. Importing the rROF model to existing search pipelines seems therefore worth considering. In this paper, we discuss the implementation of two variants of the rROF algorithm as two separate plug-ins of the coherent Wave Burst (cWB) pipeline designed to conduct searches of unmodelled gravitational-wave burst sources. The first approach is based on a single-step rROF method and the second one employs an iterative rROF procedure. Both approaches are calibrated using actual gravitational-wave events from the first three observing runs of the LIGO-Virgo-KAGRA collaboration, namely GW1501914, GW151226, GW170817, and GW190521, encompassing different types of compact binary coalescences. Our analysis shows that the iterative version of the rROF denoising algorithm implemented in the cWB pipeline effectively eliminates noise while preserving the waveform signals intact. Therefore, the combined approach yields higher signal-to-noise values than those computed by the cWB pipeline without the rROF denoising step. The incorporation of the iterative rROF algorithm in the cWB pipeline might hence impact the detectability capabilities of the pipeline along with the inference of source properties.