论文标题
关于Henstock-Kurzweil Fourier Transform的概括
On The Generalisation of Henstock-Kurzweil Fourier Transform
论文作者
论文摘要
在本文中,讨论了一个名为Laplace积分的广义积分,以无限的间隔定义,其某些属性(包括在积分符号下进行区分的必要条件)进行了讨论。还表明,这种积分比Henstock-Kurzweil积分更一般。最后,使用拉普拉斯积分来定义傅立叶变换,并建立了其众所周知的属性。
In this paper, a generalised integral called the Laplace integral is defined on unbounded intervals, and some of its properties, including necessary and sufficient condition for differentiating under the integral sign, are discussed. It is also shown that this integral is more general than the Henstock-Kurzweil integral. Finally, the Fourier transform is defined using the Laplace integral, and its well-known properties are established.