论文标题
通过利用网络安全模型优化来改善放射性材料定位
Improving Radioactive Material Localization by Leveraging Cyber-Security Model Optimizations
论文作者
论文摘要
物理空间传感器在公共安全应用中的主要用途之一是检测不安全的条件(例如,释放有毒气体,机场中的武器,污染食品)。但是,这些应用程序中的当前检测方法通常是昂贵的,使用缓慢,并且在复杂,更改或新环境中可能不准确。在本文中,我们探讨了如何利用在网络域中成功使用的机器学习方法(例如恶意软件检测),以实质上增强物理空间检测。我们专注于一种重要的示例应用 - 放射性材料的检测和定位。我们表明,基于ML的方法可以显着超过传统的基于桌子的方法,以预测角度方向。此外,可以扩展开发的模型以包括与放射性材料的距离的近似值(实践中使用的参考表未捕获的临界维度)。使用四个和八个检测器阵列,我们收集了伽马射线的计数,作为一组机器学习模型的功能,以定位放射性材料。我们通过在实验室环境中使用放射性材料的仿真框架和实验进行了七个独特的方案。我们观察到我们的方法可以超越标准的基于标准的方法,将角误差降低37%,并可靠地预测2.4%以内的距离。这样,我们表明网络检测的进步为增强公共安全应用中及其他地区的检测提供了大量机会。
One of the principal uses of physical-space sensors in public safety applications is the detection of unsafe conditions (e.g., release of poisonous gases, weapons in airports, tainted food). However, current detection methods in these applications are often costly, slow to use, and can be inaccurate in complex, changing, or new environments. In this paper, we explore how machine learning methods used successfully in cyber domains, such as malware detection, can be leveraged to substantially enhance physical space detection. We focus on one important exemplar application--the detection and localization of radioactive materials. We show that the ML-based approaches can significantly exceed traditional table-based approaches in predicting angular direction. Moreover, the developed models can be expanded to include approximations of the distance to radioactive material (a critical dimension that reference tables used in practice do not capture). With four and eight detector arrays, we collect counts of gamma-rays as features for a suite of machine learning models to localize radioactive material. We explore seven unique scenarios via simulation frameworks frequently used for radiation detection and with physical experiments using radioactive material in laboratory environments. We observe that our approach can outperform the standard table-based method, reducing the angular error by 37% and reliably predicting distance within 2.4%. In this way, we show that advances in cyber-detection provide substantial opportunities for enhancing detection in public safety applications and beyond.