论文标题

超越功能字段中的ERDS差异问题

Beyond the Erdős discrepancy problem in function fields

论文作者

Klurman, Oleksiy, Mangerel, Alexander P., Teräväinen, Joni

论文摘要

我们表征了乘法函数的部分总和的限制行为$ f:\ mathbb {f} _q [t] \ to s^1 $。与数字场设置相反,表征至关重要地取决于是否使用长间隔,短间隔或词典间隔定义了差异概念。 关于短时间间隔差异的概念,我们表明一个完全乘法$ f:\ mathbb {f} _q [t] \ to \ { - { - 1,+1 \} $,$ q $奇数具有限制的短间隔总和,并且仅在$ f $偶然地与“ modified”的“ modifiend” diricheled diricheled diricheled dirichlet for prime prime moduls时,并且仅在且仅在且仅具有限制性的短间隔和。这确认了$ \ mathbb {z} $上的猜想的功能字段版本,这些修改后的字符相对于部分总和的增长率是极端的。 关于词典差异,我们证明,如果我们使用$ \ mathbb {f} _ {q} [t] $将完全乘法序列的差异始终是无限的。这回答了刘和伍利的问题。 关于长总差异,Polymath 5合作观察到ERDőS的差异问题在$ \ Mathbb {f} _Q [t] $上无限地接受了许多完全乘法的反例。但是,如果我们限制在修改后的Dirichlet字符类中,我们可以对反例进行分类。在这种情况下,我们确定差异的确切生长速率,这对于整数上的类似问题仍然未知。

We characterize the limiting behavior of partial sums of multiplicative functions $f:\mathbb{F}_q[t]\to S^1$. In contrast to the number field setting, the characterization depends crucially on whether the notion of discrepancy is defined using long intervals, short intervals, or lexicographic intervals. Concerning the notion of short interval discrepancy, we show that a completely multiplicative $f:\mathbb{F}_q[t]\to\{-1,+1\}$ with $q$ odd has bounded short interval sums if and only if $f$ coincides with a "modified" Dirichlet character to a prime power modulus. This confirms the function field version of a conjecture over $\mathbb{Z}$ that such modified characters are extremal with respect to the growth rate of partial sums. Regarding the lexicographic discrepancy, we prove that the discrepancy of a completely multiplicative sequence is always infinite if we define it using a natural lexicographic ordering of $\mathbb{F}_{q}[t]$. This answers a question of Liu and Wooley. Concerning the long sum discrepancy, it was observed by the Polymath 5 collaboration that the Erdős discrepancy problem admits infinitely many completely multiplicative counterexamples on $\mathbb{F}_q[t]$. Nevertheless, we are able to classify the counterexamples if we restrict to the class of modified Dirichlet characters. In this setting, we determine the precise growth rate of the discrepancy, which is still unknown for the analogous problem over the integers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源