论文标题
主动队列管理中的最佳决策
Optimal Decision Making in Active Queue Management
论文作者
论文摘要
主动队列管理(AQM)旨在防止路由器中的缓冲和串行下降,然后开关通常采用滴尾排队的FIFO数据包缓冲区。 AQM描述了将主动反馈发送到TCP流源以使用选择性数据包滴或标记来调节其速率的方法。传统上,AQM政策依靠启发式方法来提供大约提供服务质量(QoS),例如给定流量的目标延迟。这些启发式方法通常基于简单的网络和TCP控制模型以及受监视的缓冲填充。这些启发式方法的主要缺点是,他们对反馈机制的会计流量特征和对拥塞状态的相应影响尚不清楚。在这项工作中,我们表明,为流速和脱水模式采用概率模型,可以制定半马多夫决策过程(SMDP)以获得最佳的数据包策略。这个名为PAQMAN的基于策略的AQM考虑了TCP的稳态模型和流量的目标延迟。此外,我们提出了一种基于TCP拥塞控制的推理算法,以校准控制基础网络条件的模型参数。使用仿真,我们表明规定的AQM产生的吞吐量可与最新的AQM算法相当,同时大大减少了延迟。
Active Queue Management (AQM) aims to prevent bufferbloat and serial drops in router and switch FIFO packet buffers that usually employ drop-tail queueing. AQM describes methods to send proactive feedback to TCP flow sources to regulate their rate using selective packet drops or markings. Traditionally, AQM policies relied on heuristics to approximately provide Quality of Service (QoS) such as a target delay for a given flow. These heuristics are usually based on simple network and TCP control models together with the monitored buffer filling. A primary drawback of these heuristics is that their way of accounting flow characteristics into the feedback mechanism and the corresponding effect on the state of congestion are not well understood. In this work, we show that taking a probabilistic model for the flow rates and the dequeueing pattern, a Semi-Markov Decision Process (SMDP) can be formulated to obtain an optimal packet-dropping policy. This policy-based AQM, named PAQMAN, takes into account a steady-state model of TCP and a target delay for the flows. Additionally, we present an inference algorithm that builds on TCP congestion control in order to calibrate the model parameters governing underlying network conditions. Using simulation, we show that the prescribed AQM yields comparable throughput to state-of-the-art AQM algorithms while reducing delays significantly.