论文标题
分析师旅行推销员算法的时间复杂性
Time complexity of the Analyst's Traveling Salesman algorithm
论文作者
论文摘要
分析师的旅行人员问题询问条件,$ \ mathbb {r}^n $的(有限或无限)子集包含在有限长度的曲线中。我们表明,对于有限集,Schul(2007)和Badger-Naples-Vellis(2019)构建的算法解决了分析师的旅行推销员问题具有多项式时间的复杂性,我们确定了敏锐的指数。
The Analyst's Traveling Salesman Problem asks for conditions under which a (finite or infinite) subset of $\mathbb{R}^N$ is contained on a curve of finite length. We show that for finite sets, the algorithm constructed by Schul (2007)and Badger-Naples-Vellis (2019) that solves the Analyst's Traveling Salesman Problem has polynomial time complexity and we determine the sharp exponent.