论文标题
三角形交叉扩散系统的弱解决方案与局部传感建模趋化性
Weak solutions to triangular cross diffusion systems modeling chemotaxis with local sensing
论文作者
论文摘要
提供了新的估计值和全球存在结果,该结果是由趋化性与局部传感建模产生的跨扩散方程系统的一类,也可能具有物流类型的增长项。对于均匀的非刺激性运动函数,显示了与空间均匀稳态的收敛,为此目的构建了专用的Lyapunov功能。
New estimates and global existence results are provided for a class of systems of cross diffusion equations arising from the modeling of chemotaxis with local sensing, possibly featuring a growth term of logistic-type as well. For sublinear non-increasing motility functions, convergence to the spatially homogeneous steady state is shown, a dedicated Lyapunov functional being constructed for that purpose.