论文标题

基于物理的紧凑模型的神经形态计算的Y-Flash Memristor

Physical based compact model of Y-Flash memristor for neuromorphic computation

论文作者

Wang, Wei, Danial, Loai, Herbelin, Eric, Hoffer, Barak, Oved, Batel, Greenberg-Toledo, Tzofnat, Pikhay, Evgeny, Roizin, Yakov, Kvatinsky, Shahar

论文摘要

Y-Flash回忆录使用了单多层浮栅门非易失性记忆(NVM)的成熟技术。它可以以两端配置的方式进行操作,类似于其他新出现的回忆设备,即电阻随机访问记忆(RRAM),相位变化记忆(PCM)等。在生产互补的金属氧化物 - 氧化物 - 氧化物 - 氧化型 - 氧化物 - 氧化型技术(CMOS)技术中,Y-Flash Memristors允许良好的再生能力反应量。该设备在亚阈值区域工作,可以以模拟方式编程为大量的微调中间状态,并允许低读数电流(1 Na〜5 $μ$ A)。但是,当前尚无准确的模型来描述这种类型的回忆设备中的动态切换,并说明了多种操作配置。在本文中,我们提供了一个基于物理的紧凑模型,该模型描述了DC和AC制度中的Y-Flash Memristor性能,并始终描述动态程序和擦除操作。该模型已集成到商业电路设计工具中,并准备在与神经形态计算有关的应用中使用。

Y-Flash memristors utilize the mature technology of single polysilicon floating gate non-volatile memories (NVM). It can be operated in a two-terminal configuration similar to the other emerging memristive devices, i.e., resistive random-access memory (RRAM), phase-change memory (PCM), etc. Fabricated in production complementary metal-oxide-semiconductor (CMOS) technology, Y-Flash memristors allow excellent repro-ducibility reflected in high neuromorphic products yields. Working in the subthreshold region, the device can be programmed to a large number of fine-tuned intermediate states in an analog fashion and allows low readout currents (1 nA ~ 5 $μ$ A). However, currently, there are no accurate models to describe the dynamic switching in this type of memristive device and account for multiple operational configurations. In this paper, we provide a physical-based compact model that describes Y-Flash memristor performance both in DC and AC regimes, and consistently describes the dynamic program and erase operations. The model is integrated into the commercial circuit design tools and is ready to be used in applications related to neuromorphic computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源