论文标题

基于单词级别数据的离线独立的作者识别

Offline Text-Independent Writer Identification based on word level data

论文作者

Kumar, Vineet, Sundaram, Suresh

论文摘要

本文提出了一种新颖的方案,以根据个人的手写输入单词图像来识别文档的作者身份。我们的方法是与文本无关的,并且对所考虑的输入单词图像的大小没有任何限制。首先,我们采用SIFT算法在不同级别的抽象级别(包括字符的特征或组合)中提取多个关键点。然后,这些关键点通过训练有素的CNN网络,以生成与卷积层相对应的特征图。但是,由于比例对应于SIFT密钥点,生成的特征映射的大小可能有所不同。为了缓解此问题,将梯度的直方图应用于特征图上,以产生固定的表示。通常,在CNN中,每个卷积块的过滤器数量增加,具体取决于网络的深度。因此,为每个卷积特征图提取直方图特征增加了维度以及计算负载。为了解决这一方面,我们使用基于熵的方法来学习算法的训练阶段中特定CNN层的特征图的权重。我们提出的系统的功效已在两个公开的数据库中证明了CVL和IAM。我们从经验上表明,与以前的作品相比,获得的结果是有希望的。

This paper proposes a novel scheme to identify the authorship of a document based on handwritten input word images of an individual. Our approach is text-independent and does not place any restrictions on the size of the input word images under consideration. To begin with, we employ the SIFT algorithm to extract multiple key points at various levels of abstraction (comprising allograph, character, or combination of characters). These key points are then passed through a trained CNN network to generate feature maps corresponding to a convolution layer. However, owing to the scale corresponding to the SIFT key points, the size of a generated feature map may differ. As an alleviation to this issue, the histogram of gradients is applied on the feature map to produce a fixed representation. Typically, in a CNN, the number of filters of each convolution block increase depending on the depth of the network. Thus, extracting histogram features for each of the convolution feature map increase the dimension as well as the computational load. To address this aspect, we use an entropy-based method to learn the weights of the feature maps of a particular CNN layer during the training phase of our algorithm. The efficacy of our proposed system has been demonstrated on two publicly available databases namely CVL and IAM. We empirically show that the results obtained are promising when compared with previous works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源