论文标题
扭曲的手性超导性沮丧的莫特绝缘子
Twisted chiral superconductivity in photodoped frustrated Mott insulators
论文作者
论文摘要
超快泵送光谱的最新进展为相关物质的隐藏阶段提供了访问,包括光引起的超导状态,但是对这些非平衡阶段的理论理解仍然有限。在这里,我们报告了如何在光电型挫败的莫特绝缘子中稳定新型手性超导阶段。亚稳态阶段具有空间变化的订单参数,并具有$ 120^\ circ $相位扭曲,从而破坏了时间反转和反转对称性。在外部电脉冲下,$ 120^\ Circ $手性超导状态还可以表现出垂直于该领域的二阶超电导状态,除了一阶平行响应外,类似于非线性异常霍尔效应。当系统通过高频周期性驾驶打扮时,可以通过人工量规场来调整此阶段。这项研究中揭示的机制适用于各种沮丧的晶格上的莫特绝缘子,并且在冷原子量子模拟器和相关固体中都可以实现隐藏的超导阶段。
Recent advances in ultrafast pump-probe spectroscopy provide access to hidden phases of correlated matter, including light-induced superconducting states, but the theoretical understanding of these nonequilibrium phases remains limited. Here we report how a new type of chiral superconducting phase can be stabilized in photodoped frustrated Mott insulators. The metastable phase features a spatially varying order parameter with a $120^\circ$ phase twist which breaks both time-reversal and inversion symmetry. Under an external electric pulse, the $120^\circ$ chiral superconducting state can exhibit a second-order supercurrent perpendicular to the field in addition to a first-order parallel response, similar to a nonlinear anomalous Hall effect. This phase can be tuned by artificial gauge fields when the system is dressed by high-frequency periodic driving. The mechanism revealed in this study applies to Mott insulators on various frustrated lattices and the hidden superconducting phase can be realized in both cold-atom quantum simulators and correlated solids.