论文标题
物理层通信中深神经网络的理论分析
Theoretical Analysis of Deep Neural Networks in Physical Layer Communication
论文作者
论文摘要
最近,基于深层的神经网络(DNN)的物理层通信技术引起了极大的兴趣。尽管通过模拟实验验证了它们增强通信系统和出色性能的潜力,但对理论分析的关注很少。具体而言,物理层中的大多数研究都倾向于专注于DNN模型在无线通信问题上的应用,但理论上不了解DNN在通信系统中的工作方式。在本文中,我们旨在定量分析为什么DNN可以在物理层中与传统技术相比,并在计算复杂性方面提高其成本。为了实现这一目标,我们首先分析了基于DNN的发射器的编码性能,并将其与传统发射器进行比较。然后,我们理论上分析了基于DNN的估计器的性能,并将其与传统估计器进行比较。第三,我们在信息理论概念下调查并验证如何在基于DNN的通信系统中播放信息。我们的分析开发了一种简洁的方式,可以在物理层通信中打开DNN的“黑匣子”,可用于支持基于DNN的智能通信技术的设计,并有助于提供可解释的性能评估。
Recently, deep neural network (DNN)-based physical layer communication techniques have attracted considerable interest. Although their potential to enhance communication systems and superb performance have been validated by simulation experiments, little attention has been paid to the theoretical analysis. Specifically, most studies in the physical layer have tended to focus on the application of DNN models to wireless communication problems but not to theoretically understand how does a DNN work in a communication system. In this paper, we aim to quantitatively analyze why DNNs can achieve comparable performance in the physical layer comparing with traditional techniques, and also drive their cost in terms of computational complexity. To achieve this goal, we first analyze the encoding performance of a DNN-based transmitter and compare it to a traditional one. And then, we theoretically analyze the performance of DNN-based estimator and compare it with traditional estimators. Third, we investigate and validate how information is flown in a DNN-based communication system under the information theoretic concepts. Our analysis develops a concise way to open the "black box" of DNNs in physical layer communication, which can be applied to support the design of DNN-based intelligent communication techniques and help to provide explainable performance assessment.