论文标题

偏斜$γ$ - 复合物的等轴测组

Isometry groups of skewed $Γ$-complexes

论文作者

Bregman, Corey

论文摘要

令$a_γ$为一个直角的Artin组。 charney,vogtmann和作者为$ \ text {out}(a_γ)构建了一个外层空间,$ clemalkize $ \ cv_n $ for $ \ text {out}(out}(f_n)$和对称空间$ \ text $ \ text {sl} _n(sl} _n(\ mathbb {r}) $ \ text {gl} _n(\ mathbb {z})$。该空间中的点是对的等效类$(x,ρ)$,其中$ρ\ colon x \ rightarrow \ mathbb {s}_γ$是从$ x $到salvetti complect $ x $ to salvetti complect $ \ mathbb {s}}_γ$和$ x $的同质等价。在本说明中,我们表明,偏斜的$γ$ - 复合物的任何等轴测图都与身份相均匀,都在于$ \ text {isom}(x)$的身份分量。作为推论,我们证明$ \ text {isom}(x)$的路径组件组是有限的,并注入$ \ text {out}(a_γ)$。

Let $A_Γ$ be a right-angled Artin group. Charney, Vogtmann and the author constructed an outer space for $\text{Out}(A_Γ)$ generalizing both $CV_n$ for $\text{Out}(F_n)$ and the symmetric space $\text{SL}_n(\mathbb{R})/\text{SO}_n(\mathbb{R})$ for $\text{GL}_n(\mathbb{Z})$. Points in this space are equivalence classes of pairs $(X,ρ)$ where $ρ\colon X\rightarrow \mathbb{S}_Γ$ is a homotopy equivalence from $X$ to the Salvetti complex $\mathbb{S}_Γ$ and $X$ is a locally CAT(0) space called a skewed $Γ$-complex. In this note we show that any isometry of a skewed $Γ$-complex which is homotopic to the identity lies in the identity component of $\text{Isom}(X)$. As a corollary, we prove that the group of path components of $\text{Isom}(X)$ is finite and injects into $\text{Out}(A_Γ)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源