论文标题
自螺旋颗粒在柔性聚合物网络中的主动扩散
Active diffusion of self-propelled particles in flexible polymer networks
论文作者
论文摘要
具有网状拓扑的生物聚合物网络,例如细胞外基质和粘液凝胶,无处不在。了解自构剂(例如Janus胶体颗粒)如何通过这种生物聚合物网络扩散的是一个开放的问题。在这里,我们通过明确建模三维生物聚合物网络并对其中的Langevin Dynamics模拟进行了对其中的自propelled Tracers的主动扩散进行测试,从而深入探讨了此问题。我们表明,活动示踪剂根据网格到颗粒的大小和péclet编号(PE)执行独特的扩散动力学。当粒子小于网格尺寸时,它会像在聚合物占用密度和PE的情况下一样移动,迁移率降低。但是,当粒径增加以与网格尺寸相当时,活性粒子使用被困和跳跃机制探索聚合物网络。我们研究了捕获的时间分布,飞行长度分布,均方位移以及不同PE时的长时间扩散率。如果粒子大于网格,它将在短时间内捕获来自聚合物网络的集体粘弹性动力学,并在大时的总系统中简单地扩散。最后,我们讨论了长期扩散率与PE的缩放行为,在那里我们找到了一系列PE产生非平凡的功率定律。事实证明,后者是由于与响应式聚合物网络结合的被困,活化的示踪剂的大量波动而产生的。
Biopolymer networks having a meshwork topology, e.g., extracellular matrix and mucus gels, are ubiquitous. It is an open question to understand how self-propelled agents such as Janus colloidal particles diffuse through such a biopolymer network. Here, we computationally explore this issue in-depth by explicitly modeling three-dimensional biopolymer networks and performing Langevin dynamics simulations of active diffusion of the self-propelled tracers therein. We show that the active tracer performs distinct diffusion dynamics depending on the mesh-to-particle size and Péclet number (Pe). When the particle is smaller than the mesh size, it moves as if in free space with a decreased mobility depending on the polymer occupation density and Pe. However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network using the trapped-and-hopping mechanism. We study the trapped time distribution, flight length distribution, the mean-squared displacement, and the long-time diffusivity at varying Pe. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. Finally, we discuss the scaling behavior of the long-time diffusivity with Pe, where we find a range of Pe that yields a nontrivial power law. The latter turns out to arise from a large fluctuation of trapped, activated tracers in conjugation with responsive polymer networks.