论文标题
关于广义的Grötzsch环功能和广义HERSCH-PFLUGER失真功能的注释
Notes on Generalized Grötzsch Ring Function and Generalized Hersch-Pfluger Distortion Function
论文作者
论文摘要
对于$ a \ in(0,1)$,$ r \ in(0,1)$和$ k \ in(1,\ infty)$,让$μ__{a}(r)$和$φ_{k}^{a}^{a}(a}(r)$ be be Generalizedgrötzsch环形环函数和全身hersch hersch-plffluger-plortplort-plorts-plortplort distrortpluger-distrortpluger-distrorts Dermittern函数。在过去的几年中,功能$μ__{a}(r)$和$φ_{k}^{a}(r)$及其特殊情况$μ__{1/2}(r)$和$φ_{k} {k}^{1/2}(1/2}(r)$在Quasic的概述中起着非常重要的作用(R)。方程式。在本文中,我们提出了$μ_{a}(r)$的系列扩展,因此证明了功能$ r \ mapsto-- [μ_{a}(r) - \ log {(e^{r(a)/2})/r}/r}] $在$(0,1)$上是绝对单调的。这里$ r(a)$是Ramanujan常数。此外,我们还研究了$φ__{k}^{a}(r)$的副本和功率副业属性,并在基本功能中为$φ_{k}^{a}(r)$建立一些新的不等式。
For $a\in(0,1)$, $r\in(0,1)$ and $K\in(1,\infty)$, let $μ_{a}(r)$ and $φ_{K}^{a}(r)$ be the generalized Grötzsch ring function and generalized Hersch-Pfluger distortion function. In the past few years, the functions $μ_{a}(r)$ and $φ_{K}^{a}(r)$, and their special cases $μ_{1/2}(r)$ and $φ_{K}^{1/2}(r)$ have been playing the very important role on the theory of quasiconformal mappings and (generalized) Ramanujan's modular equations. In this paper, we present a series expansion of $μ_{a}(r)$, and thus prove that the function $r\mapsto -[μ_{a}(r)-\log{(e^{R(a)/2})/r}]$ is absolutely monotonic on $(0,1)$. Here $R(a)$ is the Ramanujan constant. In addition, we also investigate the submultiplicative and power submultiplicative properties of $φ_{K}^{a}(r)$, and establish some new inequalities for $φ_{K}^{a}(r)$ in terms of elementary functions.