论文标题

物理信息的神经网络,用于学习多尺度椭圆方程的均质系数

Physics-informed neural networks for learning the homogenized coefficients of multiscale elliptic equations

论文作者

Park, Jun Sur Richard, Zhu, Xueyu

论文摘要

具有比例分离的多尺度椭圆方程通常通过相应的均质方程近似,具有缓慢变化的均质系数(G-LIMIT)。传统的均质化技术通常依赖于多尺度系数的周期性,因此即使在可能的情况下,即使知道多尺度系数,也通常在更一般的环境中需要复杂的技术。另外,我们提出了一种简单的方法,可以从现有的前向多尺度求解器或传感器测量值中估算(无嘈杂或嘈杂的)多尺度解决方案数据的G-LIMIT。通过将这个问题置于反问题中,我们的方法采用了物理信息的神经网络(PINN)算法,通过利用对基本同质化方程的先验知识来估计多尺度解决方案数据中的G-LIMIT。与现有方法不同,我们的方法不依赖于学习阶段期间的周期性假设或已知的多尺度系数,从而使我们能够在超出周期性环境以外的更一般环境中估算均质的系数。我们证明,所提出的方法可以通过几个基准问题提供合理且准确的近似值以及均质的解决方案。

Multiscale elliptic equations with scale separation are often approximated by the corresponding homogenized equations with slowly varying homogenized coefficients (the G-limit). The traditional homogenization techniques typically rely on the periodicity of the multiscale coefficients, thus finding the G-limits often requires sophisticated techniques in more general settings even when multiscale coefficient is known, if possible. Alternatively, we propose a simple approach to estimate the G-limits from (noisy-free or noisy) multiscale solution data, either from the existing forward multiscale solvers or sensor measurements. By casting this problem into an inverse problem, our approach adopts physics-informed neural networks (PINNs) algorithm to estimate the G-limits from the multiscale solution data by leveraging a priori knowledge of the underlying homogenized equations. Unlike the existing approaches, our approach does not rely on the periodicity assumption or the known multiscale coefficient during the learning stage, allowing us to estimate homogenized coefficients in more general settings beyond the periodic setting. We demonstrate that the proposed approach can deliver reasonable and accurate approximations to the G-limits as well as homogenized solutions through several benchmark problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源