论文标题

没有机器人的培训机器人:主机到机器人政策转移的深度模仿学习

Training Robots without Robots: Deep Imitation Learning for Master-to-Robot Policy Transfer

论文作者

Kim, Heecheol, Ohmura, Yoshiyuki, Nagakubo, Akihiko, Kuniyoshi, Yasuo

论文摘要

深度模仿学习对于机器人的操纵是有希望的,因为它仅需要示范样品。在这项研究中,深层模仿学习应用于需要力反馈的任务。但是,现有的示范方法存在缺陷。双边远程操作需要一个复杂的控制方案并且价格昂贵,动力学教学遭受了人类干预的视觉干扰。这项研究提出了一个新的主机(M2R)策略转移系统,该系统不需要机器人来进行基于教学的基于反馈的操纵任务。人类直接使用控制器演示任务。该控制器类似于机器人臂的运动学参数,并使用具有力/扭矩(F/T)传感器的相同端向效应器来测量力反馈。使用此控制器,操作员可以在没有双边系统的情况下感受到强力反馈。提出的方法可以使用基于目光的模仿学习和简单的校准方法来克服主和机器人之间的域间隙。此外,将变压器应用于从f/t感觉输入中推断策略。对拟议的系统进行了对瓶装帽的任务进行评估,该任务需要强制反馈。

Deep imitation learning is promising for robot manipulation because it only requires demonstration samples. In this study, deep imitation learning is applied to tasks that require force feedback. However, existing demonstration methods have deficiencies; bilateral teleoperation requires a complex control scheme and is expensive, and kinesthetic teaching suffers from visual distractions from human intervention. This research proposes a new master-to-robot (M2R) policy transfer system that does not require robots for teaching force feedback-based manipulation tasks. The human directly demonstrates a task using a controller. This controller resembles the kinematic parameters of the robot arm and uses the same end-effector with force/torque (F/T) sensors to measure the force feedback. Using this controller, the operator can feel force feedback without a bilateral system. The proposed method can overcome domain gaps between the master and robot using gaze-based imitation learning and a simple calibration method. Furthermore, a Transformer is applied to infer policy from F/T sensory input. The proposed system was evaluated on a bottle-cap-opening task that requires force feedback.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源