论文标题

脱节时真实和相互空间拓扑的加性规则

Additive rule of real and reciprocal space topologies at disclinations

论文作者

He, Qinghua, Sun, Jinhua, Deng, Hai-Yao, Wakabayashi, Katsunori, Liu, Feng

论文摘要

拓扑材料以其掩盖其本地化的各州(例如表面,边缘和角落)的能力而闻名。伴随这些状态,分数电荷出现在外围单位细胞上。最近,在理论上预测了晶体缺陷的拓扑结构状态和分数电荷。这种所谓的散装销售对应关系已在人造晶体结构(例如微波电路阵列和光子晶体)中实验证实。在这里,我们演示了真实空间拓扑不变$ \ mathbf {s} $之间的加性规则(与burgers vector $ \ mathbf {b} $有关)和互惠空间不变$ \ mathbf {p} $(vectored Zak Zak Zak的Bulk波波功能)。仅当$ \ mathbf {s}+\ mathbf {p}/2π$在拓扑上,绑定状态和分数费用同意披露中心。否则,即使捕获了分数费用,也没有结合状态。除了与结合状态的分数电荷解离之外,加性规则还决定了仅在样本中延伸的一半和超稳定的结合状态的半结合状态,并受到了由真实空间和相互空间拓扑的保护。我们的结果为正在进行的拓扑问题研究增加了另一个维度,并可能发明有趣的应用。

Topological materials are renowned for their ability to harbor states localized at their peripheries, such as surfaces, edges, and corners. Accompanying these states, fractional charges appear on peripheral unit cells. Recently, topologically bound states and fractional charges at disclinations of crystalline defects have been theoretically predicted. This so-called bulk-disclination correspondence has been experimentally confirmed in artificial crystalline structures, such as microwave-circuit arrays and photonic crystals. Here, we demonstrate an additive rule between the real-space topological invariant $\mathbf{s}$ (related to the Burgers vector $\mathbf{B}$) and the reciprocal-space topological invariant $\mathbf{p}$ (vectored Zak's phase of bulk wave functions). The bound states and fractional charges concur at a disclination center only if $\mathbf{s}+\mathbf{p}/2π$ is topologically nontrivial; otherwise, no bound state forms even if fractional charges are trapped. Besides the dissociation of fractional charges from bound states, the additive rule also dictates the existence of half-bound states extending over only half of a sample and ultra-stable bound states protected by both real-space and reciprocal-space topologies. Our results add another dimension to the ongoing study of topological matter and may germinate interesting applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源