论文标题

关于离散修改的korteweg-devries方程的奇异性结构

On the singularity structure of a discrete modified-Korteweg-deVries equation

论文作者

Grammaticos, Basil, Tamizhmani, Thamizharasi, Willox, Ralph

论文摘要

我们研究了修改的晶格Korteweg-Devries(KDV)方程的奇异性,并表明它接收了三个奇异家族,具有类似的特性,与晶格KDV方程中的奇异性相似。第一个家庭由局部奇异性组成,这些奇点可以占据任意的大型领域,但仍然始终被限制。第二个家庭由一条或多条线组成,从平面上的西南到东北,涉及一个有限值,该值取决于方程中出现的参数。我们认为,这种奇异性的无限程度与限制特性或方程式的整合性不符。第三个家族由水平条组成,其中垂直相邻晶格位点的值乘积等于1。在晶格KDV方程的情况下,这种类型的奇异性被称为“ Taishi”。修改后的晶格KDV方程的Taishi可以与其他两个家族的奇异性相互作用,从而产生非常丰富的{且相当复杂的奇异性结构。尽管如此,这些相互作用可以通过表述与动力学相似但在某种意义上比KDV情况更简单的动力学的符号表示,可以以紧凑的方式描述这些相互作用。我们用与超级进程MKDV方程相关的盒子和球系统来解释这种符号表示。这些结果表明,taishi型奇异性不仅限于晶格KDV方程,但很可能是可集成晶格方程的一般特征,这些方程与其集成性的其他方面具有深厚的连接。

We study the singularities of a modified lattice Korteweg-deVries (KdV) equation and show that it admits three families of singularities, with analogous properties to those found in the lattice KdV equation. The first family consists of localised singularities which can occupy an arbitrarily large domain but which are, nevertheless, always confined. The second family consists of one or more lines extending all the way from the south-west to the north-east on the plane, involving a single finite value that depends on the parameter that appears in the equation. We argue that the infinite extent of this singularity is not incompatible with the confinement property or with the integrability of the equation. The third family consists of horizontal strips in which the product of values on vertically adjacent lattice sites is equal to 1. In the case of the lattice KdV equation this type of singularity was dubbed `taishi'. The taishi for the modified lattice KdV equation can interact with singularities of the other two families, giving rise to very rich {and quite intricate} singularity structures. Nonetheless, these interactions can be described in a compact way through the formulation of a symbolic representation of the dynamics that is similar to, but in a sense, simpler than that for the KdV case. We give an interpretation of this symbolic representation in terms of a Box&Ball system related to the ultradiscrete mKdV equation. These results show that taishi-type singularities are not limited to the lattice KdV equation, but might very well be a general feature of integrable lattice equations with deep connections to other facets of their integrability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源