论文标题

多任务无味的卡尔曼反转(MUKI):无衍生的关节反转框架及其应用于地球物理数据的关节反转

Multi-task unscented Kalman inversion (MUKI): a derivative-free joint inversion framework and its application to joint inversion of geophysical data

论文作者

Wang, Longlong, Chen, Yun, Liu, Youshan, Du, Nanqiao, Li, Wei, Suwen, Junliu

论文摘要

在地球物理关节反转中,基于梯度和贝叶斯马尔可夫链蒙特卡洛(MCMC)采样方法因其快速收敛或全球最优性而被广泛使用。但是,这些方法要么需要计算梯度,因此很容易属于局部最佳解决方案,或者花费大量时间来在巨大的采样空间中进行数百万个正向计算。与这两种方法不同,利用了最近开发的计算数学中未发音的卡尔曼方法,我们扩展了无迭代的无梯度贝叶斯关节反转框架,即多任务无用的卡尔曼反转(MUKI)。在这个新框架中,已合并了来自各种观察结果的信息,以无衍生的方式迭代更新模型,并获得了模型参数后分布的高斯近似值。我们将MUKI应用于接收器函数和表面波散的关节反转,该反转已建立良好,并广泛用于构建地球的地壳和上地幔结构。基于合成和真实数据,测试表明,与基于梯度的方法和Markov Chain Monte Carlo方法相比,MUKI可以更有效地恢复模型,这将是解决地球物理联合反转问题的一种有希望的方法。

In the geophysical joint inversion, the gradient and Bayesian Markov Chain Monte Carlo (MCMC) sampling-based methods are widely used owing to their fast convergences or global optimality. However, these methods either require the computation of gradients and easily fall into local optimal solutions, or cost much time to carry out the millions of forward calculations in a huge sampling space. Different from these two methods, taking advantage of the recently developed unscented Kalman method in computational mathematics, we extend an iterative gradient-free Bayesian joint inversion framework, i.e., Multi-task unscented Kalman inversion (MUKI). In this new framework, information from various observations is incorporated, the model is iteratively updated in a derivative-free way, and a Gaussian approximation to the posterior distribution of the model parameters is obtained. We apply the MUKI to the joint inversion of receiver functions and surface wave dispersion, which is well-established and widely used to construct the crustal and upper mantle structure of the earth. Based on synthesized and real data, the tests demonstrate that MUKI can recover the model more efficiently than the gradient-based method and the Markov Chain Monte Carlo method, and it would be a promising approach to resolve the geophysical joint inversion problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源