论文标题

有效的引力波模板银行生成具有可微分波形的生成

Efficient Gravitational Wave Template Bank Generation with Differentiable Waveforms

论文作者

Coogan, Adam, Edwards, Thomas D. P., Chia, Horng Sheng, George, Richard N., Freese, Katherine, Messick, Cody, Setzer, Christian N., Weniger, Christoph, Zimmerman, Aaron

论文摘要

来自紧凑型二进制合并的重力波的最敏感的搜索管道使用匹配的过滤器来提取来自引力波检测器的嘈杂数据流的信号。匹配的过滤器搜索需要涵盖二进制系统物理参数空间的模板波形库。不幸的是,模板库的构建可能是一项耗时的任务。在这里,我们提出了一种有效生成模板库的新方法,该模板库利用自动分化来计算参数空间度量。主要是,我们证明自动分化可以准确计算搜索管道中当前使用的波形,同时计算便宜。此外,通过将随机模板放置和一种评估当前涵盖的参数空间的比例进行组合,我们表明可以快速生成用于频域波形的搜索模板库。最后,我们认为可区分的波形为加速随机位置算法提供了一种途径。我们根据JAX框架Diffbank将所有方法实施到易于使用的Python软件包中,以使社区可以轻松利用可微分的波形进行以后的搜索。

The most sensitive search pipelines for gravitational waves from compact binary mergers use matched filters to extract signals from the noisy data stream coming from gravitational wave detectors. Matched-filter searches require banks of template waveforms covering the physical parameter space of the binary system. Unfortunately, template bank construction can be a time-consuming task. Here we present a new method for efficiently generating template banks that utilizes automatic differentiation to calculate the parameter space metric. Principally, we demonstrate that automatic differentiation enables accurate computation of the metric for waveforms currently used in search pipelines, whilst being computationally cheap. Additionally, by combining random template placement and a Monte Carlo method for evaluating the fraction of the parameter space that is currently covered, we show that search-ready template banks for frequency-domain waveforms can be rapidly generated. Finally, we argue that differentiable waveforms offer a pathway to accelerating stochastic placement algorithms. We implement all our methods into an easy-to-use Python package based on the jax framework, diffbank, to allow the community to easily take advantage of differentiable waveforms for future searches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源