论文标题
探索$ 2 \ Lessim z \ Lessim6 $的镜头恒星构成团块的物理特性
Exploring the physical properties of lensed star-forming clumps at $2\lesssim z \lesssim6$
论文作者
论文摘要
我们研究物理特性(尺寸,恒星质量,光度,恒星形成率)和比例关系,用于166个带有红移$ z \ sim 2-6.2 $的166个星形成团块的样品。通过使用我们的高精度镜头模型,基于182个多个图像,计算出强大的透镜放大倍率($ 2 \lyssimμ\ Lessim 82 $ 82 $ 82 $),它们被Hubble Frontier Field Galaxy群集Macs放大,并具有强大的镜头放大倍率($ 2 \simsimμ\ Lessim 82 $)。我们的样本延长了$ \ sim 3 $乘以$ z \ gtrsim 2 $的光谱确认镜头团的数量。我们识别紫外线连续图像中的团块,发现每当有效的空间分辨率(通过重力镜头增强)增加时,它们就会碎裂成较小的实体,可能反映出星形形成的层次结构性质。在我们的样品中找不到最常见的KPC尺度团块。我们样本的物理属性扩展了通常由$ z \ gtrsim 1 $探索的参数空间,通过填充低质量(m $ _ \ star \ star \ lysesim 10^7 $ m $ _ \ odot $),低星形的形式率(Sfr $ \ smials smials.5 $ $ _ $ _ $ $ $ $ $ $ $ yr) (R $ _ \ Mathrm {eff} \ Lessim 100 $ PC)制度。我们的研究探测的新领域接近紧凑型恒星复合物和恒星簇的状态。在质量大小的平面中,我们的样品跨越星系和球形簇之间的区域,在年轻的恒星簇和球形群体中,该区域中有一些团块。对于我们的大部分样品,我们测量的恒星形态速率高于紧凑型恒星系统中局部观察到的恒星形成率,这表明高红移时恒星形成的条件不同于本地宇宙。
We study the physical properties (size, stellar mass, luminosity, star formation rate) and scaling relations for a sample of 166 star-forming clumps with redshift $z \sim 2-6.2$. They are magnified by the Hubble Frontier Field galaxy cluster MACS~J0416 and have robust lensing magnification ($2\lesssim μ\lesssim 82$) computed by using our high-precision lens model, based on 182 multiple images. Our sample extends by $\sim 3$ times the number of spectroscopically-confirmed lensed clumps at $z \gtrsim 2$. We identify clumps in ultraviolet continuum images and find that, whenever the effective spatial resolution (enhanced by gravitational lensing) increases, they fragment into smaller entities, likely reflecting the hierarchically-organized nature of star formation. Kpc-scale clumps, most commonly observed in field, are not found in our sample. The physical properties of our sample extend the parameter space typically probed by $z \gtrsim 1$ field observations and simulations, by populating the low mass (M$_\star \lesssim 10^7$ M$_\odot$), low star formation rate (SFR $\lesssim 0.5$ M$_\odot$ yr$^{-1}$), and small size (R$_\mathrm{eff} \lesssim 100$ pc) regime. The new domain probed by our study approaches the regime of compact stellar complexes and star clusters. In the mass-size plane, our sample spans the region between galaxies and globular clusters, with a few clumps in the region populated by young star clusters and globular-clusters. For the bulk of our sample, we measure star-formation rates which are higher than those observed locally in compact stellar systems, indicating different conditions for star formation at high redshift than in the local Universe.