论文标题
分析方法用于估算陀螺仪的Allan-Deviation参数的飞机修复位移
Analytic Method for Estimating Aircraft Fix Displacement from Gyroscope's Allan-Deviation Parameters
论文作者
论文摘要
导航级陀螺仪的噪声和漂移要求是众所周知的,但是没有简单的分析模型,即陀螺仪的噪声和漂移如何影响惯性导航系统(INS)的固定位移误差(FDE)。这项工作得出了对飞机的交叉轨道和沿轨道误差的简单分析表达式,其INS仅由三轴陀螺仪系统组成,对垂直方向有完整的了解。每个陀螺仪的误差信号是高斯白噪声,并以一阶马尔可夫随机步行为模型。这些表达式提供了一个直接的平均值,即计算飞机的FDE与飞行持续时间,速度,噪声振幅,漂移幅度和漂移时间常数的关系。这些表达式通过长途飞行的蒙特卡洛模拟进行了验证。该模型量化了惯性导航系统中陀螺仪的噪声拖延权衡。当估计陀螺仪必须表现出来满足给定的位置要求的噪声和漂移时,它可以节省时间,反之亦然。它们尤其被用来确认通常没有示范的噪声和漂移所需的噪声和漂移的值,以满足联邦航空管理局所需的导航性能10规格所施加的飞机的最大位置误差。最后,它表明,在测得的陀螺仪的甲偏偏差中使用最小值作为漂移的度量是不正确的,因为它无法捕获漂移的时间常数。适当的度量是Allan偏差的最大值。
The noise and drift requirements for a navigation-grade gyroscope are widely known, yet there is no simple analytic model of how the noise and drift of a gyroscope influence the fix displacement error (FDE) of an inertial navigation system (INS). This work derives simple analytical expressions for the cross-track and along-track errors of an aircraft whose INS consists solely of a three-axis gyroscope system with perfect knowledge of the vertical direction. The error signal of each gyroscope is Gaussian white noise and drift modeled as a first-order Markov random walk. These expressions provide a straightforward mean of calculating the FDE of an aircraft as a function of the flight duration, velocity, noise amplitude, drift amplitude, and drift's time constant. These expressions are validated with Monte-Carlo simulations of long flights. This model quantifies the noise-versus-drift trade-off for a gyroscope in an inertial navigation system. It can save time when estimating the noise and drift that a gyroscope must exhibit to satisfy a given position-error requirement, or vice versa. They are used in particular to confirm the values, often cited without demonstration, of the noise and drift required to meet the maximum position error of an aircraft imposed by the Federal Aviation Administration's required navigation performance 10 specification. Finally, it demonstrates that using the minimum in the measured Allan deviation of a gyroscope as a metric of the drift is incorrect, because it fails to capture the drift's time constant. The proper metric is the maximum in the Allan deviation.