论文标题

Datamux:神经网络的数据多路复用

DataMUX: Data Multiplexing for Neural Networks

论文作者

Murahari, Vishvak, Jimenez, Carlos E., Yang, Runzhe, Narasimhan, Karthik

论文摘要

在本文中,我们介绍了数据多路复用(DataMux),该技术使深度神经网络能够使用单个紧凑的表示可以同时处理多个输入。 DataMux证明了神经网络能够对输入混合物产生准确的预测,从而增加了吞吐量,并具有最小的额外记忆需求。我们的方法使用两个关键组件 - 1)多路复用层,在组合它们之前,该层对每个输入执行固定的线性转换,以创建与单个输入相同大小的混合表示形式,然后由基本网络对其进行处理,而2)将基本网络的输出返回到独立的预测,然后将基本网络进行处理。我们在跨越句子分类的六个不同任务上,显示了DataMux对不同体系结构(变形金刚和较小程度的MLP和CNN)的生存能力。例如,变形金刚的DataMux可以多重$ 20 $ x/$ 40 $ x输入,获得$ 11 $ x/$ 18 $ x的吞吐量增加吞吐量,而绝对性能最小的$ <2 \%$和$ <4 \%$ $ <4 \%$在MNLI上是自然语言推论任务。我们还提供了一种理论构造,用于在自我发项网络中多路复用,并分析DataMux各种设计元素的效果。

In this paper, we introduce data multiplexing (DataMUX), a technique that enables deep neural networks to process multiple inputs simultaneously using a single compact representation. DataMUX demonstrates that neural networks are capable of generating accurate predictions over mixtures of inputs, resulting in increased throughput with minimal extra memory requirements. Our approach uses two key components -- 1) a multiplexing layer that performs a fixed linear transformation to each input before combining them to create a mixed representation of the same size as a single input, which is then processed by the base network, and 2) a demultiplexing layer that converts the base network's output back into independent representations before producing predictions for each input. We show the viability of DataMUX for different architectures (Transformers, and to a lesser extent MLPs and CNNs) across six different tasks spanning sentence classification, named entity recognition and image classification. For instance, DataMUX for Transformers can multiplex up to $20$x/$40$x inputs, achieving $11$x/$18$x increase in throughput with minimal absolute performance drops of $<2\%$ and $<4\%$ respectively on MNLI, a natural language inference task. We also provide a theoretical construction for multiplexing in self-attention networks and analyze the effect of various design elements in DataMUX.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源