论文标题

Finnet:用有限差神经网络解决时间无关的微分方程

FinNet: Solving Time-Independent Differential Equations with Finite Difference Neural Network

论文作者

Tu, Son N. T., Nguyen, Thu

论文摘要

近年来,由于它们的网格柔性和计算效率,近年来,部分微分方程(PDE)的深度学习方法受到了很多关注。但是,到目前为止,大多数作品都集中在时间依赖性的非线性微分方程上。在这项工作中,我们使用众所周知的物理知情神经网络分析潜在问题的微分方程,而边界上的限制很小(即,约束仅在几个点上)。这种分析促使我们引入了一种名为Finnet的新技术,用于通过将有限的差异纳入深度学习来解决微分方程。即使我们在训练过程中使用网格,预测阶段也不是网状的。我们通过实验解决各种方程式来说明我们方法的有效性,这表明Finnet可以求解较低的错误率,即使Pinns无法解决。

Deep learning approaches for partial differential equations (PDEs) have received much attention in recent years due to their mesh-freeness and computational efficiency. However, most of the works so far have concentrated on time-dependent nonlinear differential equations. In this work, we analyze potential issues with the well-known Physic Informed Neural Network for differential equations with little constraints on the boundary (i.e., the constraints are only on a few points). This analysis motivates us to introduce a novel technique called FinNet, for solving differential equations by incorporating finite difference into deep learning. Even though we use a mesh during training, the prediction phase is mesh-free. We illustrate the effectiveness of our method through experiments on solving various equations, which shows that FinNet can solve PDEs with low error rates and may work even when PINNs cannot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源