论文标题

来自单粒子相关函数的相互作用拓扑阶段的无监督和监督学习

Unsupervised and supervised learning of interacting topological phases from single-particle correlation functions

论文作者

Tibaldi, Simone, Magnifico, Giuseppe, Vodola, Davide, Ercolessi, Elisa

论文摘要

机器学习算法的最新进展已将这些技术的应用在凝结物理学领域中的应用,例如在平衡处对物质的阶段进行分类或预测大类物理模型的实时动力学。通常,在这些工作中,对来自同一物理模型的数据进行了训练和测试机器学习算法。在这里,我们证明了无监督和监督的机器学习技术能够预测在可解决模型的数据进行培训时,可以预测不可解决的模型的阶段。特别是,我们采用了由非相互作用量子线的单粒子相关函数制成的训练集,并使用主成分分析,K-均值聚类和卷积神经网络,我们重建相互作用的超导体的相图。我们表明,对非相互作用模型数据训练的主要成分分析和卷积神经网络都可以识别具有高度准确性的相互作用模型的拓扑阶段。我们的发现表明,可以通过不受监督和监督的技术应用于非相互作用系统数据来识别出从相互作用的存在中出现的物质的非平凡阶段。

The recent advances in machine learning algorithms have boosted the application of these techniques to the field of condensed matter physics, in order e.g. to classify the phases of matter at equilibrium or to predict the real-time dynamics of a large class of physical models. Typically in these works, a machine learning algorithm is trained and tested on data coming from the same physical model. Here we demonstrate that unsupervised and supervised machine learning techniques are able to predict phases of a non-exactly solvable model when trained on data of a solvable model. In particular, we employ a training set made by single-particle correlation functions of a non-interacting quantum wire and by using principal component analysis, k-means clustering, and convolutional neural networks we reconstruct the phase diagram of an interacting superconductor. We show that both the principal component analysis and the convolutional neural networks trained on the data of the non-interacting model can identify the topological phases of the interacting model with a high degree of accuracy. Our findings indicate that non-trivial phases of matter emerging from the presence of interactions can be identified by means of unsupervised and supervised techniques applied to data of non-interacting systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源