论文标题

基于输入状态数据和多面体跨互相噪声边界的数据驱动控制的信息条件

Informativity conditions for data-driven control based on input-state data and polyhedral cross-covariance noise bounds

论文作者

Steentjes, Tom R. V., Lazar, Mircea, Hof, Paul M. J. Van den

论文摘要

动态系统的建模和控制依赖于包含有关系统信息的测量数据。有限的数据测量通常会导致一组未经验证的系统模型,即解释数据。具有二次性能的稳定或控制的数据信息性问题与存在稳定所有未经损失系统或实现所需二次性能的控制器的存在有关。文献中的最新结果为基于输入状态数据和椭圆形噪声界限(例如能量或幅度边界)提供了控制性条件。在本文中,我们考虑了输入状态数据的信息,以控制噪声边界通过噪声相对于仪器变量的噪声界定。最初作为参数边界标识中最初作为噪声表征引入的边界。所考虑的交叉互相边界由有限数量的超平面定义,这些平面诱导了(可能是无限的)多面体集合的未损服系统。我们为具有多面体交叉交叉交互范围的输入状态数据提供了信息条件,用于稳定和$ \ MATHCAL {H} _2 $/$/$ \ MATHCAL {H} _ \ INFTY $通过Vertex/Half-Space Control the Dothealified Systems的多面体表示。

Modeling and control of dynamical systems rely on measured data, which contains information about the system. Finite data measurements typically lead to a set of system models that are unfalsified, i.e., that explain the data. The problem of data-informativity for stabilization or control with quadratic performance is concerned with the existence of a controller that stabilizes all unfalsified systems or achieves a desired quadratic performance. Recent results in the literature provide informativity conditions for control based on input-state data and ellipsoidal noise bounds, such as energy or magnitude bounds. In this paper, we consider informativity of input-state data for control where noise bounds are defined through the cross-covariance of the noise with respect to an instrumental variable; bounds that were introduced originally as a noise characterization in parameter bounding identification. The considered cross-covariance bounds are defined by a finite number of hyperplanes, which induce a (possibly unbounded) polyhedral set of unfalsified systems. We provide informativity conditions for input-state data with polyhedral cross-covariance bounds for stabilization and $\mathcal{H}_2$/$\mathcal{H}_\infty$ control through vertex/half-space representations of the polyhedral set of unfalsified systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源