论文标题
泰勒的膨胀和帕德近近似值,用于在非变化化学电位上保守电荷波动的累积物
Taylor expansions and Padé approximants for cumulants of conserved charge fluctuations at non-vanishing chemical potentials
论文作者
论文摘要
使用(2+1) - 含有QCD在有限温度下的QCD计算中产生的高统计数据集,我们在baryon化学潜力的非零值下呈现了净bary子数净波动的低阶累积物的结果。我们计算泰勒的膨胀(零级累积量),净bary子密度(一阶累积)和净 - 巴里昂数字波动(二阶累积累积)的分布方差。我们从压力的第八阶膨胀中获得串联扩展,并将其与对角线帕德近似值进行比较。这使我们能够估计这些扩展可靠的重子化学电位的值范围。我们发现$μ_b/t \ le 2.5 $,$ 2.0 $和$ 1.5 $,分别为零,一阶和二阶累积物。我们此外,构造泰勒压力系列收敛半径的构造估计器。在伪 - 关键温度的附近,$ t_ {pc} \ simeq 156.5 $ mev,我们在消失的陌生化学潜力和更大的陌生物质中性物质中发现了$μ_b/t \ gtrsim \ 2.9 $。这些估计值取决于温度,范围从$μ_b/t \ gtrsim \ 2.2 $ at $ t = 135 $ meV到$μ_b/t \ \ \ \ gtrsim \ gtrsim \ 3.2 $ at $ t = 165 $ mev。对于任何高阶累积剂,估计的收敛半径都是相同的。
Using high statistics datasets generated in (2+1)-flavor QCD calculations at finite temperature we present results for low order cumulants of net baryon-number fluctuations at non-zero values of the baryon chemical potential. We calculate Taylor expansions for the pressure (zeroth order cumulant), net baryon-number density (first order cumulant) and the variance of the distribution on net-baryon number fluctuations (second order cumulant). We obtain series expansions from an eighth order expansion of the pressure and compare these to diagonal Padé approximants. This allows us to estimate the range of values for the baryon chemical potential in which these expansions are reliable. We find $μ_B/T\le 2.5$, $2.0$ and $1.5$ for the zeroth, first and second order cumulants, respectively. We furthermore, construct estimators for the radius of convergence of the Taylor series of the pressure. In the vicinity of the pseudo-critical temperature, $T_{pc}\simeq 156.5$ MeV, we find $μ_B/T \gtrsim\ 2.9$ at vanishing strangeness chemical potential and somewhat larger values for strangeness neutral matter. These estimates are temperature dependent and range from $μ_B/T \gtrsim\ 2.2$ at $T=135$ MeV to $μ_B/T\ \gtrsim\ 3.2$ at $T=165$ MeV. The estimated radius of convergences is the same for any higher order cumulant.