论文标题
抛物线连接和抛物线处理的无限变形
Infinitesimal deformations of parabolic connections and parabolic opers
论文作者
论文摘要
我们计算表格$$(x,s,e_*,d)的四倍体的无限变形,其中$(x,s)$是一个紧凑的riemann Surface,带有$ n $标记点,$ e _*$是parabolic vector bundle on $ x $,带有$ x $,$ x $,$ d $ $ d $ $ d $ $ d parboric ins paraboric ins parabolic conventigh使用它,我们计算了$(x,s,d)$的无限变形,其中$ d $是抛物线sl(r,c) - $(x,s)$。结果表明,从三倍的模量$(x,s,d)$的模构图,其中$ d $是抛物线sl(r,c)$(x,s)$上的抛物线sl(x,s)$,到sl(r,c) - x-s的character品种,是一种浸入。
We compute the infinitesimal deformations of quadruples of the form $$(X, S, E_*, D),$$ where $(X, S)$ is a compact Riemann surface with $n$ marked points, $E_*$ is a parabolic vector bundle on $X$ with parabolic structure over $S$, and $D$ is a parabolic connection on $E_*$. Using it we compute the infinitesimal deformations of $(X, S, D)$, where $D$ is a parabolic SL(r, C)-oper on $(X, S)$. It is shown that the monodromy map, from the moduli space of triples $(X, S, D)$, where $D$ is a parabolic SL(r, C)-oper on $(X, S)$, to the SL(r, C)-character variety of X - S, is an immersion.