论文标题
复杂分散系统中表面电磁波的固有自旋摩孔动力学
Intrinsic spin-momentum dynamics of surface electromagnetic waves in complex dispersive system
论文作者
论文摘要
自旋摩托明锁定是表面电磁场的内在特性,其研究导致发现光子自旋晶格和不同的应用。以前,在自旋摩托锁锁中忽略了分散体,从而导致异常现象与物理现实相矛盾。在这里,我们为表面波制定了四个色散旋转摩托孔方程,从而普遍揭示了横向自旋矢量与动量锁定。锁定属性遵守介电上的右手规则,但分散金属/磁性材料中的左手规则。除了色散外,结构特征还可以显着影响自旋旋转锁定。值得注意的是,即使对于纯粹的极化状态,也发现了源自耦合极化椭圆度的非凡纵向自旋。我们进一步通过工程旋转对称性来证明具有不同光子拓扑晶格的自旋摩托锁定特性。这些发现为在手性量子光学元件中设计了具有实际重要性的强大纳米电视的机会。
Spin-momentum locking is an intrinsic property of surface electromagnetic fields and its study has led to the discovery of photonic spin lattices and diverse applications. Previously, dispersion was ignored in the spin-momentum locking, giving rise to abnormal phenomena contradictory to the physical realities. Here, we formulate four dispersive spin-momentum equations for surface waves, revealing universally that the transverse spin vector is locked with the momentum. The locking property obeys the right-hand rule in the dielectric but the left-hand rule in the dispersive metal/magnetic materials. In addition to the dispersion, the structural features can affect the spin-momentum locking significantly. Remarkably, an extraordinary longitudinal spin originating from the coupling polarization ellipticity is uncovered even for the purely polarized state. We further demonstrate the spin-momentum locking properties with diverse photonic topological lattices by engineering the rotating symmetry. The findings open up opportunities for designing robust nanodevices with practical importance in chiral quantum optics.