论文标题

使用平衡的二进制搜索树增强了多目标A*

Enhanced Multi-Objective A* Using Balanced Binary Search Trees

论文作者

Ren, Zhongqiang, Zhan, Richard, Rathinam, Sivakumar, Likhachev, Maxim, Choset, Howie

论文摘要

这项工作解决了图表上的多目标最短路径问题(MO-SPP),该目标是从启动节点到图中目的地找到一组帕累托最佳解决方案。已经开发了基于MOA*的方法来解决文献中的MO-SPP。通常,这些方法在搜索过程中保持在每个节点上设置的“边界”,以跟踪非主导的部分路径到达该节点。当目标数量增加时,随着帕累托最佳解决方案的数量增加,该搜索过程在计算上变得昂贵。在这项工作中,我们引入了一种新方法,通过在MOA*搜索框架内逐步构造平衡的二进制搜索树,以有效地维护这些目标。我们首先表明我们的方法正确找到了帕累托最佳的前沿,然后为三个,四个,四个和五个目标的问题提供了广泛的仿真结果,以表明我们的方法的运行速度比现有技术的运行速度比现有技术更快。

This work addresses a Multi-Objective Shortest Path Problem (MO-SPP) on a graph where the goal is to find a set of Pareto-optimal solutions from a start node to a destination in the graph. A family of approaches based on MOA* have been developed to solve MO-SPP in the literature. Typically, these approaches maintain a "frontier" set at each node during the search process to keep track of the non-dominated, partial paths to reach that node. This search process becomes computationally expensive when the number of objectives increases as the number of Pareto-optimal solutions becomes large. In this work, we introduce a new method to efficiently maintain these frontiers for multiple objectives by incrementally constructing balanced binary search trees within the MOA* search framework. We first show that our approach correctly finds the Pareto-optimal front, and then provide extensive simulation results for problems with three, four and five objectives to show that our method runs faster than existing techniques by up to an order of magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源