论文标题
GNN-SURROGATE:一个分层和自适应图神经网络,用于参数空间探索非结构化网状海洋模拟
GNN-Surrogate: A Hierarchical and Adaptive Graph Neural Network for Parameter Space Exploration of Unstructured-Mesh Ocean Simulations
论文作者
论文摘要
我们提出了GNN-Surogate,这是一种基于图神经网络的替代模型,以探索海洋气候模拟的参数空间。参数空间探索对于域科学家来说,了解输入参数(例如,风应力)对仿真输出(例如温度)的影响很重要。探索要求科学家通过运行一批计算昂贵的模拟来耗尽复杂的参数空间。我们的方法通过替代模型提高了参数空间探索的效率,该模型可以准确有效地预测仿真输出。具体而言,GNN-Surogate用给定的仿真参数预测输出字段,因此科学家可以通过用户指定的视觉映射的可视化探索模拟参数空间。此外,我们的基于图的技术是为非结构化网格设计的,从而使对不规则网格的模拟输出有效地进行了探索。为了进行有效的培训,我们生成层次图并使用自适应分辨率。我们对MPAS-ocean模拟进行定量和定性评估,以证明GNN-SURROGATE的有效性和效率。源代码可在https://github.com/trainsn/gnn-surrogate上公开获得。
We propose GNN-Surrogate, a graph neural network-based surrogate model to explore the parameter space of ocean climate simulations. Parameter space exploration is important for domain scientists to understand the influence of input parameters (e.g., wind stress) on the simulation output (e.g., temperature). The exploration requires scientists to exhaust the complicated parameter space by running a batch of computationally expensive simulations. Our approach improves the efficiency of parameter space exploration with a surrogate model that predicts the simulation outputs accurately and efficiently. Specifically, GNN-Surrogate predicts the output field with given simulation parameters so scientists can explore the simulation parameter space with visualizations from user-specified visual mappings. Moreover, our graph-based techniques are designed for unstructured meshes, making the exploration of simulation outputs on irregular grids efficient. For efficient training, we generate hierarchical graphs and use adaptive resolutions. We give quantitative and qualitative evaluations on the MPAS-Ocean simulation to demonstrate the effectiveness and efficiency of GNN-Surrogate. Source code is publicly available at https://github.com/trainsn/GNN-Surrogate.