论文标题

较高的寄生虫几何形状具有必不可少的自动形态和非变化曲率

Higher rank parabolic geometries with essential automorphisms and nonvanishing curvature

论文作者

Erickson, Jacob W.

论文摘要

我们在许多高级抛物线模型几何形状的封闭歧管上构建了常规正常卡坦几何形状的无限常规cartan几何形状的家族。为此,我们使用Kostant Laplacian的内核的特殊要素来构建所需类型的均匀的cartan几何形状,从而使由于kruglikov和the而导致优雅的局部结构进行了全球认识,然后修改了这些均质的几何形状,以使其基本谱系使其基本歧管。作为示范,我们将构造应用于混合签名的Quaternionic接触结构,以及其他示例。

We construct infinite families of regular normal Cartan geometries with nonvanishing curvature and essential automorphisms on closed manifolds for many higher rank parabolic model geometries. To do this, we use particular elements of the kernel of the Kostant Laplacian to construct homogeneous Cartan geometries of the desired type, giving a global realization of an elegant local construction due to Kruglikov and The, and then modify these homogeneous geometries to make their base manifolds compact. As a demonstration, we apply the construction to quaternionic contact structrures of mixed signature, among other examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源