论文标题
跨宇宙时间的分子气的色谱柱密度:桥接观测和模拟
The Column Densities of Molecular Gas across Cosmic Time: Bridging Observations and Simulations
论文作者
论文摘要
观察到跨时间的不同气相的宇宙演化表明,分子气体质量密度显着增加,向$ z \ sim 2-3 $。这种转换意味着分子氢柱密度的全局分布的随附变化($ n _ {\ rm {h_2}} $)。使用phangs-alma/sdss的观察以及griffin/diveralistng的模拟,我们探索了此H $ _2 $列列密度分布功能的演变[$ f(n _ {\ rm {h} _2} _2}})$]。 TNG50和TNG100的H $ _2 $(和HI)列密度地图是在后处理中得出的,可通过Illarteristng Online API提供。 $ f(n _ {\ rm {h} _2})$的形状和标准化与单个主要序列星形星系的$与星形形成率(SFR),恒星质量($ {m _**} $)和h $ _2 $ _2 $ sim($ m_ _ _ { TNG100与H $ _2 $后处理模型相结合,广泛地再现观测值,尽管斜率和归一化差异。此外,基于指数气盘的分析建模$ f(n)$与模拟匹配。 Griffin仿真给出了$ f(n _ {\ rm {h} _2})$的斜率时,当在模拟中包括非平衡化学反应时可能不会有所不同。 $ f(n _ {\ rm {h} _2})$ tng100意味着在$ z = 3 $时达到了较高的分子气柱密度,而不是$ z = 0 $。此外,密集的区域对$ z = 3 $的分子质量密度有更多的贡献。最后,H $ _2 $与HI仅在log上方的列密度($ n _ {\ rm {h} _2} _2} / \ rm {cm}^{ - 2})\ sim 21.8-22 $上的列中开始占主导地位。这些结果表明,中性原子气是导致星系中总体冷气质量的重要因素,包括$ z = 0 $和$ z = 3 $的分子云的典型密度。
Observations of the cosmic evolution of different gas phases across time indicate a marked increase in the molecular gas mass density towards $z\sim 2-3$. Such a transformation implies an accompanied change in the global distribution of molecular hydrogen column densities ($N_{\rm{H_2}}$). Using observations by PHANGS-ALMA/SDSS and simulations by GRIFFIN/IllustrisTNG we explore the evolution of this H$_2$ column density distribution function [$f(N_{\rm{H}_2})$]. The H$_2$ (and HI) column density maps for TNG50 and TNG100 are derived in post-processing and are made available through the IllustrisTNG online API. The shape and normalization of $f(N_{\rm{H}_2})$ of individual main-sequence star-forming galaxies are correlated with the star formation rate (SFR), stellar mass (${M_*}$), and H$_2$ mass ($M_{\rm{H}_2}$) in both observations and simulations. TNG100, combined with H$_2$ post-processing models, broadly reproduces observations, albeit with differences in slope and normalization. Also, an analytically modelled $f(N)$, based on exponential gas disks, matches well with the simulations. The GRIFFIN simulation gives first indications that the slope of $f(N_{\rm{H}_2})$ might not majorly differ when including non-equilibrium chemistry in simulations. The $f(N_{\rm{H}_2})$ by TNG100 implies that higher molecular gas column densities are reached at $z=3$ than at $z=0$. Further, denser regions contribute more to the molecular mass density at $z=3$. Finally, H$_2$ starts dominating compared to HI only at column densities above log($N_{\rm{H}_2} / \rm{cm}^{-2}) \sim 21.8-22$ at both redshifts. These results imply that neutral atomic gas is an important contributor to the overall cold gas mass found in the ISM of galaxies including at densities typical for molecular clouds at $z=0$ and $z=3$.