论文标题

Verwey过渡是通过电子词素偶联到Trimerons的演变

Verwey transition as evolution from electronic nematicity to trimerons via electron-phonon coupling

论文作者

Wang, Wei, Li, Jun, Liang, Zhixiu, Wu, Lijun, Lozano, Pedro M., Komarek, Alexander C., Shen, Xiaozhe, Reid, Alex H., Wang, Xijie, Li, Qiang, Yin, Weiguo, Sun, Kai, Zhu, Yimei, Robinson, Ian K., Dean, Mark P. M., Tao, Jing

论文摘要

了解金属 - 绝缘体转变(MIT)背后的驾驶机制是迈向控制材料特性的关键步骤。由于1939年,Verwey在磁铁矿Fe3O4中提出了电荷订购诱导的MIT的提议,因此电荷顺序的性质及其在过渡中的作用仍然难以捉摸,这在复杂氧化物的研究中长期存在挑战。最近,在Fe3O4的低温单斜结构中发现了Trimeron秩序。然而,在Verwey过渡时形成Trimeron的预期过渡熵变化大于观察到的值,该值在高温相中对基态的重新检查。在这里,我们使用电子衍射来揭示特定FE位点上的列电荷顺序在散装FE3O4的高温立方结构中出现,并且在冷却后,电荷和晶格订单的竞争性相互交织会导致Verwey Transition的出现。此外,MEV Ultrafast电子衍射(UED)提供了对光激发电子和X3声子模式之间强耦合的动态度量。我们的发现在相关材料中发现了一种新型的电子非神经性,并通过电子波耦合对Fe3O4中Verwey过渡机构提供了新的见解。

Understanding the driving mechanisms behind metal-insulator transitions (MITs) is a critical step towards controlling material's properties. Since the proposal of charge-order-induced MIT in magnetite Fe3O4 in 1939 by Verwey, the nature of the charge order and its role in the transition have remained elusive-a longstanding challenge in the studies of complex oxides. Recently, a trimeron order was discovered in the low-temperature monoclinic structure of Fe3O4; however, the expected transition entropy change in forming trimeron at the Verwey transition is greater than the observed value, which arises a reexamination of the ground state in the high-temperature phase. Here we use electron diffraction to unveil that a nematic charge order on particular Fe sites emerges in the high-temperature cubic structure of bulk Fe3O4, and that upon cooling, a competitive intertwining of charge and lattice orders leads to the emergence of the Verwey transition. Moreover, MeV ultrafast electron diffraction (UED) provides a dynamic measure of the strong coupling between photoexcited electrons and the X3 phonon modes. Our findings discover a new type of electronic nematicity in correlated materials and offer novel insights into the Verwey transition mechanism in Fe3O4 via the electron-phonon coupling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源