论文标题
放松的微态模型的原始和混合有限元制剂
Primal and mixed finite element formulations for the relaxed micromorphic model
论文作者
论文摘要
经典的Cauchy Continuum理论适合对高度均匀的材料进行建模。但是,许多材料,例如多孔培养基或超材料,都表现出明显的微观结构。结果,如果不完全解决基础微观结构,经典的连续性理论就无法捕获其机械行为。就有限元计算而言,这可以通过对整个身体(包括每个内部细胞)进行建模来完成。松弛的微态连续体通过丰富数学模型的运动学来提供另一种方法。该理论引入了一个微阶级字段,包括每个材料点的额外自由度。相应的弹性能函数包含位移场,微渗场及其卷曲(微脱位)的梯度。因此,用于位移的自然空间是$ [\ mathit {h}^1]^3 $,对于微阶层而言,$ [\ mathit {h}(\ mathrm {curl})]^3 $用于微阶段,导致了不寻常的有限元元素表格。在这项工作中,我们描述了使用nédélec和raviart-thomas子空间构建适当的有限元素,其中包括解决方案问题的解决方案以及离散一致的耦合条件。此外,我们探索了原始配方和混合配方的宽松微态模型的数值行为。我们的基准的焦点在于特征长度$ l_ \ mathrm {c} $的影响以及与古典库奇连续理论的相关性。
The classical Cauchy continuum theory is suitable to model highly homogeneous materials. However, many materials, such as porous media or metamaterials, exhibit a pronounced microstructure. As a result, the classical continuum theory cannot capture their mechanical behaviour without fully resolving the underlying microstructure. In terms of finite element computations, this can be done by modelling the entire body, including every interior cell. The relaxed micromorphic continuum offers an alternative method by instead enriching the kinematics of the mathematical model. The theory introduces a microdistortion field, encompassing nine extra degrees of freedom for each material point. The corresponding elastic energy functional contains the gradient of the displacement field, the microdistortion field and its Curl (the micro-dislocation). Therefore, the natural spaces of the fields are $[\mathit{H}^1]^3$ for the displacement and $[\mathit{H}(\mathrm{curl})]^3$ for the microdistortion, leading to unusual finite element formulations. In this work we describe the construction of appropriate finite elements using Nédélec and Raviart-Thomas subspaces, encompassing solutions to the orientation problem and the discrete consistent coupling condition. Further, we explore the numerical behaviour of the relaxed micromorphic model for both a primal and a mixed formulation. The focus of our benchmarks lies in the influence of the characteristic length $L_\mathrm{c}$ and the correlation to the classical Cauchy continuum theory.