论文标题

基于有效的UNET和形态后处理的神经元实例分割的一般深度学习框架

A General Deep Learning framework for Neuron Instance Segmentation based on Efficient UNet and Morphological Post-processing

论文作者

Wu, Huaqian, Souedet, Nicolas, Jan, Caroline, Clouchoux, Cédric, Delzescaux, Thierry

论文摘要

最近的研究表明,深度学习在医学图像分析中的优势,尤其是在细胞实例分割中,这是许多生物学研究的基本步骤。但是,神经网络的出色表现需要在大型,公正的数据集和注释上进行培训,这是劳动密集型和专业知识的要求。本文提出了一个端到端的框架,以自动检测并分段仅使用点注释在组织学图像上进行Neun染色的神经元细胞。与传统的核分割和点注释不同,我们建议使用点注释和二进制分割来合成像素级注释。合成口罩被用作训练神经网络的基础真理,该神经网络是一种具有最先进的网络的U-NET型体系结构,例如EfficityNet,作为编码器。验证结果表明,与其他最新方法相比,我们的模型的优越性。此外,我们研究了多个后处理方案,并提出了一种原始策略,以使用最终侵蚀和动态重建将概率图转换为分段实例。这种方法很容易配置,并且胜过其他经典的后处理技术。这项工作旨在开发一个强大而有效的框架,用于使用光学微观数据分析神经元,该框架可用于临床前生物学研究,更具体地说,在神经退行性疾病的背景下。

Recent studies have demonstrated the superiority of deep learning in medical image analysis, especially in cell instance segmentation, a fundamental step for many biological studies. However, the excellent performance of the neural networks requires training on large, unbiased dataset and annotations, which is labor-intensive and expertise-demanding. This paper presents an end-to-end framework to automatically detect and segment NeuN stained neuronal cells on histological images using only point annotations. Unlike traditional nuclei segmentation with point annotation, we propose using point annotation and binary segmentation to synthesize pixel-level annotations. The synthetic masks are used as the ground truth to train the neural network, a U-Net-like architecture with a state-of-the-art network, EfficientNet, as the encoder. Validation results show the superiority of our model compared to other recent methods. In addition, we investigated multiple post-processing schemes and proposed an original strategy to convert the probability map into segmented instances using ultimate erosion and dynamic reconstruction. This approach is easy to configure and outperforms other classical post-processing techniques. This work aims to develop a robust and efficient framework for analyzing neurons using optical microscopic data, which can be used in preclinical biological studies and, more specifically, in the context of neurodegenerative diseases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源