论文标题
通过在intsanton速率理论中纳入第一原则电子摩擦的耗散隧道率II:基准和应用
Dissipative Tunneling Rates through the Incorporation of First-Principles Electronic Friction in Instanton Rate Theory II: Benchmarks and Applications
论文作者
论文摘要
在第一部分中,我们使用明显的摩擦(RPI-EF)方法介绍了环形聚合物Instanton,并展示了如何将其连接到\ textIt {ab intio}电子摩擦形式主义。该框架允许计算隧道反应速率,该隧道反应速率结合了金属中存在的核的量子性质和某些类型的非绝热效应(NAE)。在第二部分中,我们分析了RPI-EF在模型电位上的性能,并将其应用于现实系统。对于1D双孔模型,我们根据多层多型配置时间依赖于Hartree计算获得的数值确切结果对方法进行基准测试。我们证明RPI-EF对于中和高摩擦强度是准确的,对于极低的摩擦值,RPI-EF较少准确。我们还定量地展示了NAE的包含如何降低跨界温度进入深隧道制度,降低隧道速率,在某些方案中,通过修改隧道途径来引导量子动力学。作为该方法效率的展示,我们介绍了一项针对选定散装金属中邻近间质位点之间氢气和氘跳的研究。结果表明,多维振动耦合和核量子效应对金属扩散的隧道速率具有更大的影响。与第一部分一起,这些结果可以从第一原则中推进了耗散隧道率的计算。
In part I, we presented the ring-polymer instanton with explicit friction (RPI-EF) method and showed how it can be connected to the \textit{ab initio} electronic friction formalism. This framework allows the calculation of tunneling reaction rates that incorporate the quantum nature of the nuclei and certain types of non-adiabatic effects (NAEs) present in metals. In this second part, we analyze the performance of RPI-EF on model potentials and apply it to realistic systems. For a 1D double-well model, we benchmark the method against numerically exact results obtained from multi-layer multi-configuration time-dependent Hartree calculations. We demonstrate that RPI-EF is accurate for medium and high friction strengths and less accurate for extremely low friction values. We also show quantitatively how the inclusion of NAEs lowers the cross-over temperature into the deep tunneling regime, reduces the tunneling rates, and in certain regimes, steers the quantum dynamics by modifying the tunneling pathways. As a showcase of the efficiency of this method, we present a study of hydrogen and deuterium hopping between neighboring interstitial sites in selected bulk metals. The results show that multidimensional vibrational coupling and nuclear quantum effects have a larger impact than NAEs on the tunneling rates of diffusion in metals. Together with part I, these results advance the calculations of dissipative tunneling rates from first principles.