论文标题

星系光谱神经网络(GASNETS)。 I.使用深度学习在EBOSS光谱中搜索强镜头候选者

Galaxy Spectra neural Networks (GaSNets). I. Searching for strong lens candidates in eBOSS spectra using Deep Learning

论文作者

Zhong, Fucheng, Li, Rui, Napolitano, Nicola R.

论文摘要

随着新的光谱调查从地面和空间的出现,观察多达数亿个星系,对于标准分析技术来说,光谱分类将变得压倒性。为了为这一挑战做准备,我们介绍了一个深度学习工具家庭,以对一维光谱进行分类。作为这些星系光谱神经网络(GASNETS)的第一次应用,我们专注于专门识别Eboss光谱中强烈镜头恒星形成星系的发射线的工具。我们首先讨论这些网络的培训和测试,并为高质量事件检测定义了95%的阈值概率,PL。然后,使用HST确认的先前的一组光谱镜选择的强镜头,我们估计完整性约为80%,因为在采用的PL上方恢复的镜头的一部分。最终,我们将GASNET应用于〜130万光谱,以收集约430个新的高质量候选者的第一个列表,这些候选者用深度学习应用于光谱,并视觉上是高度可能的真实事件。针对地面观察结果的初步检查表明,该样本的确认率为38%,这与先前使用标准(无深度学习)分类工具和Hubble Space望远镜的随访相符。第一次测试表明,机器学习可以有效地扩展到波长空间中的特征识别,这对于未来的调查至关重要,例如4个,DESI,Euclid和中国空间站望远镜(CSST)。

With the advent of new spectroscopic surveys from ground and space, observing up to hundreds of millions of galaxies, spectra classification will become overwhelming for standard analysis techniques. To prepare for this challenge, we introduce a family of deep learning tools to classify features in one-dimensional spectra. As the first application of these Galaxy Spectra neural Networks (GaSNets), we focus on tools specialized at identifying emission lines from strongly lensed star-forming galaxies in the eBOSS spectra. We first discuss the training and testing of these networks and define a threshold probability, PL, of 95% for the high quality event detection. Then, using a previous set of spectroscopically selected strong lenses from eBOSS, confirmed with HST, we estimate a completeness of ~80% as the fraction of lenses recovered above the adopted PL. We finally apply the GaSNets to ~1.3M spectra to collect a first list of ~430 new high quality candidates identified with deep learning applied to spectroscopy and visually graded as highly probable real events. A preliminary check against ground-based observations tentatively shows that this sample has a confirmation rate of 38%, in line with previous samples selected with standard (no deep learning) classification tools and follow-up by Hubble Space Telescope. This first test shows that machine learning can be efficiently extended to feature recognition in the wavelength space, which will be crucial for future surveys like 4MOST, DESI, Euclid, and the Chinese Space Station Telescope (CSST).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源