论文标题
用高斯过程回归建模星星:增强恒星模型网格
Modelling stars with Gaussian Process Regression: Augmenting Stellar Model Grid
论文作者
论文摘要
基于网格的建模广泛用于估计恒星参数。但是,由于计算成本,恒星模型网格很少。本文展示了使用高斯过程(GP)回归的机器学习算法的应用,该过程将稀疏模型网格转换为连续函数。我们训练GP模型将五个基本输入(质量,等效的进化相,初始金属性,初始氦分数和混合长度参数)映射到可观察到的输出(有效温度,表面重力,半径,表面金属性和出色的年龄)。我们使用离网恒星模型测试了五个输出的GP预测,并且找不到明显的系统偏移,这表明预测的准确性良好。作为进一步的验证,我们将这些GP模型应用于表征1,000个假恒星。通过GP模型确定的推断质量和年龄很好地恢复了一个标准偏差内的真实值。使用基于GP的插值的重要结果是,由于基本输入的完整采样,恒星年龄比原始稀疏网格估计的年龄更精确。
Grid-based modelling is widely used for estimating stellar parameters. However, stellar model grid is sparse because of the computational cost. This paper demonstrates an application of a machine-learning algorithm using the Gaussian Process (GP) Regression that turns a sparse model grid onto a continuous function. We train GP models to map five fundamental inputs (mass, equivalent evolutionary phase, initial metallicity, initial helium fraction, and the mixing-length parameter) to observable outputs (effective temperature, surface gravity, radius, surface metallicity, and stellar age). We test the GP predictions for the five outputs using off-grid stellar models and find no obvious systematic offsets, indicating good accuracy in predictions.As a further validation, we apply these GP models to characterise 1,000 fake stars. Inferred masses and ages determined with GP models well recover true values within one standard deviation. An important consequence of using GP-based interpolation is that stellar ages are more precise than those estimated with the original sparse grid because of the full sampling of fundamental inputs.