论文标题

尘土飞扬的不稳定

Instability of a dusty vortex

论文作者

Shuai, Shuai, Dhas, Darish Jeswin, Roy, Anubhab, Kasbaoui, M. Houssem

论文摘要

我们研究了分散在有限半径圆形斑块中的惯性颗粒对半稀释粉尘尘流中二维兰氨酸涡流的稳定性的影响。与不存在不稳定模式的无颗粒情况不同,我们表明粒子的反馈力会触发新颖的不稳定性。使用线性稳定性分析对弱惯性颗粒进行了线性稳定性分析的特征,并针对Eulerian-Lagrangian模拟进行了进一步验证。我们表明,如果质量加载$ m> 0 $,则含有粒子的涡流总是不稳定的。令人惊讶的是,即使是非惯性颗粒,也通过类似于离心雷利 - 泰勒在径向分层的涡流中以密度跳跃的速度不稳定的机制破坏了涡旋的稳定。我们确定了临界质量加载,在该临界质量加载中,本征$ m $变得不稳定。随着M的增加,这种临界质量负载下降到零。当颗粒是惯性的时,低于临界质量负荷的模式将变得不稳定,而与非惯性情况相比,其上方的模式仍然不稳定,但增长率较低。与Eulerian-Lagrangian模拟的比较表明,从模拟计算出的增长率符合理论预测。过去的线性阶段,我们观察到高波模式的出现,这些模式变成了从核心出现的浓缩颗粒的螺旋臂,而无颗粒流的区域则向内吸带。涡度场显示相似的模式,从而导致初始兰金结构的崩溃。这种新颖的涡流不稳定性突出了分散阶段的反馈力如何诱导原本有弹性的涡流结构的分解。

We investigate the effect of inertial particles dispersed in a circular patch of finite radius on the stability of a two-dimensional Rankine vortex in semi-dilute dusty flows. Unlike the particle-free case where no unstable modes exist, we show that the feedback force from the particles triggers a novel instability. The mechanisms driving the instability are characterized using linear stability analysis for weakly inertial particles and further validated against Eulerian-Lagrangian simulations. We show that the particle-laden vortex is always unstable if the mass loading $M>0$. Surprisingly, even non-inertial particles destabilize the vortex by a mechanism analogous to the centrifugal Rayleigh-Taylor instability in radially stratified vortex with density jump. We identify a critical mass loading above which an eigenmode $m$ becomes unstable. This critical mass loading drops to zero as m increases. When particles are inertial, modes that fall below the critical mass loading become unstable, whereas, modes above it remain unstable but with lower growth rates compared to the non-inertial case. Comparison with Eulerian-Lagrangian simulations shows that growth rates computed from simulations match well the theoretical predictions. Past the linear stage, we observe the emergence of high-wavenumber modes that turn into spiraling arms of concentrated particles emanating out of the core, while regions of particle-free flow are sucked inward. The vorticity field displays similar pattern which lead to the breakdown of the initial Rankine structure. This novel instability for a dusty vortex highlights how the feedback force from the disperse phase can induce the breakdown of an otherwise resilient vortical structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源