论文标题

Torchdrug:一个强大而灵活的机器学习平台用于药物发现

TorchDrug: A Powerful and Flexible Machine Learning Platform for Drug Discovery

论文作者

Zhu, Zhaocheng, Shi, Chence, Zhang, Zuobai, Liu, Shengchao, Xu, Minghao, Yuan, Xinyu, Zhang, Yangtian, Chen, Junkun, Cai, Huiyu, Lu, Jiarui, Ma, Chang, Liu, Runcheng, Xhonneux, Louis-Pascal, Qu, Meng, Tang, Jian

论文摘要

机器学习具有巨大的潜力,可以彻底改变药物发现领域,并且近年来正在引起越来越多的关注。但是,缺乏域知识(例如,要执行的任务),标准的基准和数据预处理管道是机器学习研究人员在该领域工作的主要障碍。为了促进用于药物发现的机器学习的进展,我们开发了Torchdrug,这是一个强大而灵活的机器学习平台,用于在Pytorch上建立的药物发现。 Torchdrug基准测试了药物发现中的各种重要任务,包括分子性质预测,预验证的分子表示,从头分子设计和优化,逆转录合成预测以及生物医学知识图形推理。针对这些任务实施了基于几何深度学习(或图形机器学习),深入生成模型,增强学习和知识图推理的最新技术。 Torchdrug具有分层界面,可促进该领域的新手和专家的自定义。教程,基准结果和文档可在https://torchdrug.ai上找到。代码是根据Apache许可证2.0发布的。

Machine learning has huge potential to revolutionize the field of drug discovery and is attracting increasing attention in recent years. However, lacking domain knowledge (e.g., which tasks to work on), standard benchmarks and data preprocessing pipelines are the main obstacles for machine learning researchers to work in this domain. To facilitate the progress of machine learning for drug discovery, we develop TorchDrug, a powerful and flexible machine learning platform for drug discovery built on top of PyTorch. TorchDrug benchmarks a variety of important tasks in drug discovery, including molecular property prediction, pretrained molecular representations, de novo molecular design and optimization, retrosynthsis prediction, and biomedical knowledge graph reasoning. State-of-the-art techniques based on geometric deep learning (or graph machine learning), deep generative models, reinforcement learning and knowledge graph reasoning are implemented for these tasks. TorchDrug features a hierarchical interface that facilitates customization from both novices and experts in this domain. Tutorials, benchmark results and documentation are available at https://torchdrug.ai. Code is released under Apache License 2.0.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源