论文标题
具有可分离状态编码的量子神经元
Quantum Neuron with Separable-State Encoding
论文作者
论文摘要
使用高级量子神经元模型用于模式识别应用需要容错。因此,目前尚不能够在当前可用的量子处理器中大规模测试此类模型。作为替代方案,我们提出了一个使用降低数量的多量门门的量子感知器(QP)模型,因此在当前实际量子计算机中对量子误差的影响较小,其公差有限。所提出的量子算法优于其经典算法,尽管由于它没有充分利用量子纠缠,因此与使用多个量子纠缠相比,它比其他量子算法提供了较低的编码功率。但是,使用可分离的状态编码允许在当前可用的非故障耐受量子计算机中大规模测试算法和不同的训练方案。我们通过在模拟量子计算机中实现QP的一些Qubits版本来证明所提出的模型的性能。所提出的QP使用表征模式的二进制输入数据的N- ARY编码。我们开发了一种混合(量子古典)培训程序,以模拟QP的学习过程并测试其效率。
The use of advanced quantum neuron models for pattern recognition applications requires fault tolerance. Therefore, it is not yet possible to test such models on a large scale in currently available quantum processors. As an alternative, we propose a quantum perceptron (QP) model that uses a reduced number of multi-qubit gates and is therefore less susceptible to quantum errors in current actual quantum computers with limited tolerance. The proposed quantum algorithm is superior to its classical counterpart, although since it does not take full advantage of quantum entanglement, it provides a lower encoding power than other quantum algorithms using multiple qubit entanglement. However, the use of separable-sate encoding allows for testing the algorithm and different training schemes at a large scale in currently available non-fault tolerant quantum computers. We demonstrate the performance of the proposed model by implementing a few qubits version of the QP in a simulated quantum computer. The proposed QP uses an N-ary encoding of the binary input data characterizing the patterns. We develop a hybrid (quantum-classical) training procedure for simulating the learning process of the QP and test their efficiency.