论文标题

使用深Q网络和系统分区的入侵响应系统

An Intrusion Response System utilizing Deep Q-Networks and System Partitions

论文作者

Cardellini, Valeria, Casalicchio, Emiliano, Iannucci, Stefano, Lucantonio, Matteo, Mittal, Sudip, Panigrahi, Damodar, Silvi, Andrea

论文摘要

入侵反应是一个相对较新的研究领域。创建入侵响应系统(IRSS)的最新方法使用加固学习(RL)作为一种主要技术,以最佳或近乎最佳的选择选择适当的对策,以停止或减轻持续的攻击。但是,他们中的大多数人都不认为系统可以随着时间的流逝而变化,换句话说,系统表现出非平稳行为。此外,由于状态空间呈指数增长,而受保护系统的大小呈指数增长,因此状态方法(例如基于RL的方法)遭受了维度的诅咒。 在本文中,我们介绍并开发了IRS软件原型,名为IRS-Partition。它利用受保护系统和深q网络的分区来通过支持多代理公式来解决维度的诅咒。此外,它利用转移学习遵循非平稳系统的演变。

Intrusion Response is a relatively new field of research. Recent approaches for the creation of Intrusion Response Systems (IRSs) use Reinforcement Learning (RL) as a primary technique for the optimal or near-optimal selection of the proper countermeasure to take in order to stop or mitigate an ongoing attack. However, most of them do not consider the fact that systems can change over time or, in other words, that systems exhibit a non-stationary behavior. Furthermore, stateful approaches, such as those based on RL, suffer the curse of dimensionality, due to a state space growing exponentially with the size of the protected system. In this paper, we introduce and develop an IRS software prototype, named irs-partition. It leverages the partitioning of the protected system and Deep Q-Networks to address the curse of dimensionality by supporting a multi-agent formulation. Furthermore, it exploits transfer learning to follow the evolution of non-stationary systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源