论文标题
关于Bestvina-Brady组的概括的虚拟和残留特性
On the virtual and residual properties of a generalization of Bestvina-Brady groups
论文作者
论文摘要
以前,我们中的一个介绍了一个$ g^m_l(s)$的家庭,由有限的国旗复合物$ l $参数,常规覆盖$ m $ $ l $,以及一套$ s $ s $ s $ integers。我们对$ g^m_l(s)$的猜想描述是残留有限的或几乎不含扭转的。如果$ m $是有限的封面,而$ s $是周期性的,则具有内核$ g_l^m(s)$的扩展名,而无限环保商是猫(0)立方组。我们猜想这个小组几乎是特别的。我们将这三个猜想相互联系,并证明了许多猜想。
Previously one of us introduced a family of groups $G^M_L(S)$, parametrized by a finite flag complex $L$, a regular covering $M$ of $L$, and a set $S$ of integers. We give conjectural descriptions of when $G^M_L(S)$ is either residually finite or virtually torsion-free. In the case that $M$ is a finite cover and $S$ is periodic, there is an extension with kernel $G_L^M(S)$ and infinite cyclic quotient that is a CAT(0) cubical group. We conjecture that this group is virtually special. We relate these three conjectures to each other and prove many cases of them.