论文标题
从多频一侧散射数据中的波导中的小缺陷重建
Small defects reconstruction in waveguides from multifrequency one-side scattering data
论文作者
论文摘要
在声学或电磁波指导中,小缺陷的定位和重建对结构的非破坏性评估至关重要。这项工作的目的是提出一种新的多频反转方法,以重建2D波导中的小缺陷。给定传播模式的一侧多频波场测量值,我们使用天生的近似值来提供三种类型的缺陷的L2稳定重建:波导内部的局部扰动,波导的弯曲,以及在波导的几何形状中的局部缺陷。该方法基于从傅立叶域中的可用部分数据中逐个模式的空间傅立叶反转。实际上,在可用的数据中,缺少有关缺陷的一些高空间频率信息。我们使用紧凑的支持假设和对缺陷的最小平滑度假设克服了这一问题。我们还提供了一种合适的数值方法来有效地重建此类缺陷,并讨论了其应用和限制。
Localization and reconstruction of small defects in acoustic or electromagnetic waveguides is of crucial interest in nondestructive evaluation of structures. The aim of this work is to present a new multi-frequency inversion method to reconstruct small defects in a 2D waveguide. Given one-side multi-frequency wave field measurements of propagating modes, we use a Born approximation to provide a L2-stable reconstruction of three types of defects: a local perturbation inside the waveguide, a bending of the waveguide, and a localized defect in the geometry of the waveguide. This method is based on a mode-by-mode spacial Fourier inversion from the available partial data in the Fourier domain. Indeed, in the available data, some high and low spatial frequency information on the defect are missing. We overcome this issue using both a compact support hypothesis and a minimal smoothness hypothesis on the defects. We also provide a suitable numerical method for efficient reconstruction of such defects and we discuss its applications and limits.