论文标题

紧凑型封闭类别中严格的扩展反射性

On strict extensional reflexivity in compact closed categories

论文作者

Hines, Peter

论文摘要

本文研究了Abramsky,Haghverdi和Scott的无型线性组合代数的分类环境,并将其与Abramsky和Heunen在Frobenius代数在无限制环境中的最新作品有关。这样做的关键是扩展反射性(对象的属性是其自身内部HOM的同构。我们表征紧凑型封闭类别中的扩展反射性,并考虑如何“严格化”以给出具有反射性的同构是身份箭头的单性等效类别。 这会导致双对象紧凑型封闭类别由单位对象和非单位延伸反射对象组成。 我们从代数观点研究了这种“严格延伸反射性”对象的内态性。它们必然包含一个有趣的单体,可以被认为是理查德·汤普森(Richard Thompson)的标志性群体F,以及同样标志性的半群理论的双环自行车,以及两者之间的非平凡相互作用。我们认为这是艾布拉姆斯基和赫恩嫩的(无单位)弗罗贝尼乌斯代数的重要例子。 然后,我们根据代数和类别理论给出了混凝土示例。这些基于部分注射的追踪单体类别,以及紧凑型封闭类别中的反身物体,这些对象应用于INT或GOI构造。我们给出了紧凑的封闭类别,与INT(PINJ)的紧凑型封闭子类别相当,在该类别中,这种反射性通过身份箭头表现出来,并显示上述代数结构(Thompson's F,Bicyclic himoid soloid soloid和Frobenius代数)如何以根本的方式出现。

This article studies the categorical setting of Abramsky, Haghverdi, and Scott's untyped linear combinatory algebras, and relates this to more recent work of Abramsky and Heunen on Frobenius algebras in the infinitary setting. The key to this is extensional reflexivity (the property of an object being isomorphic to its own internal hom. $N\cong [N\rightarrow N]$). We characterise extensional reflexivity in compact closed categories, and consider how this may be `strictified' to give monoidally equivalent categories where the isomorphisms exhibiting reflexivity are identity arrows. This results in two-object compact closed categories consisting of a unit object, and a non-unit extensionally reflexive object. We study the endomorphism monoids of such `strictly extensionally reflexive' objects from an algebraic viewpoint. They necessarily contain an interesting monoid that may be thought of as Richard Thompson's iconic group F together with the equally iconic bicyclic monoid of semigroup theory, with non-trivial interactions between the two derived from the Frobenius algebra identity. We claim this as a significant example of the (unitless) Frobenius algebras of Abramsky and Heunen. We then give concrete examples, based on the algebra and category theory behind the Geometry of Interaction program. These are based on the traced monoidal category of partial injections, and reflexive objects in the compact closed category that results from applying the Int or GoI construction. We give compact closed categories, monoidally equivalent to compact closed subcategories of Int(pInj), where this reflexivity is exhibited by identity arrows, and show how the above algebraic structures (Thompson's F, the bicyclic monoid, and Frobenius algebras) arise in a fundamental manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源